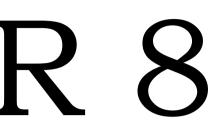
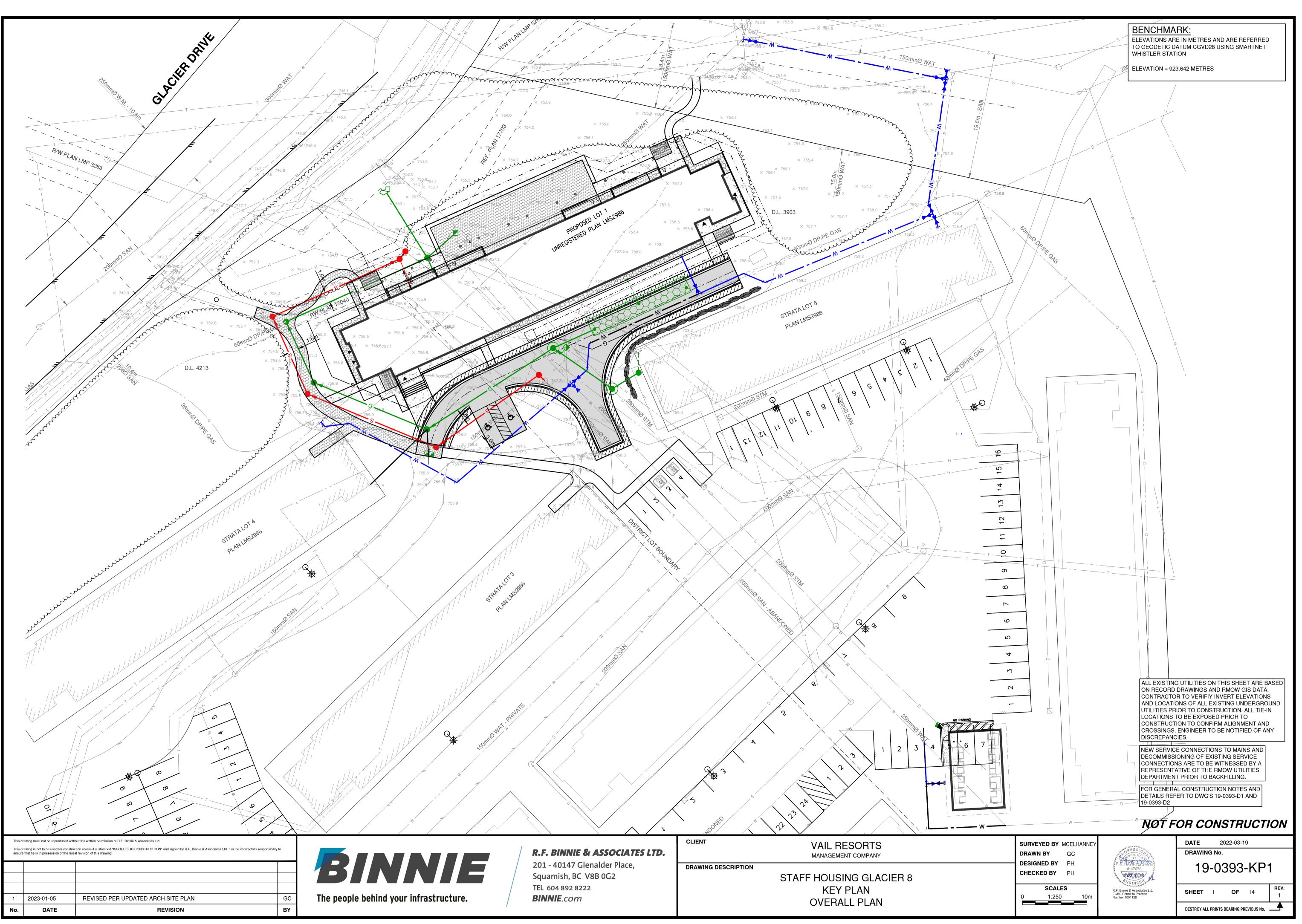
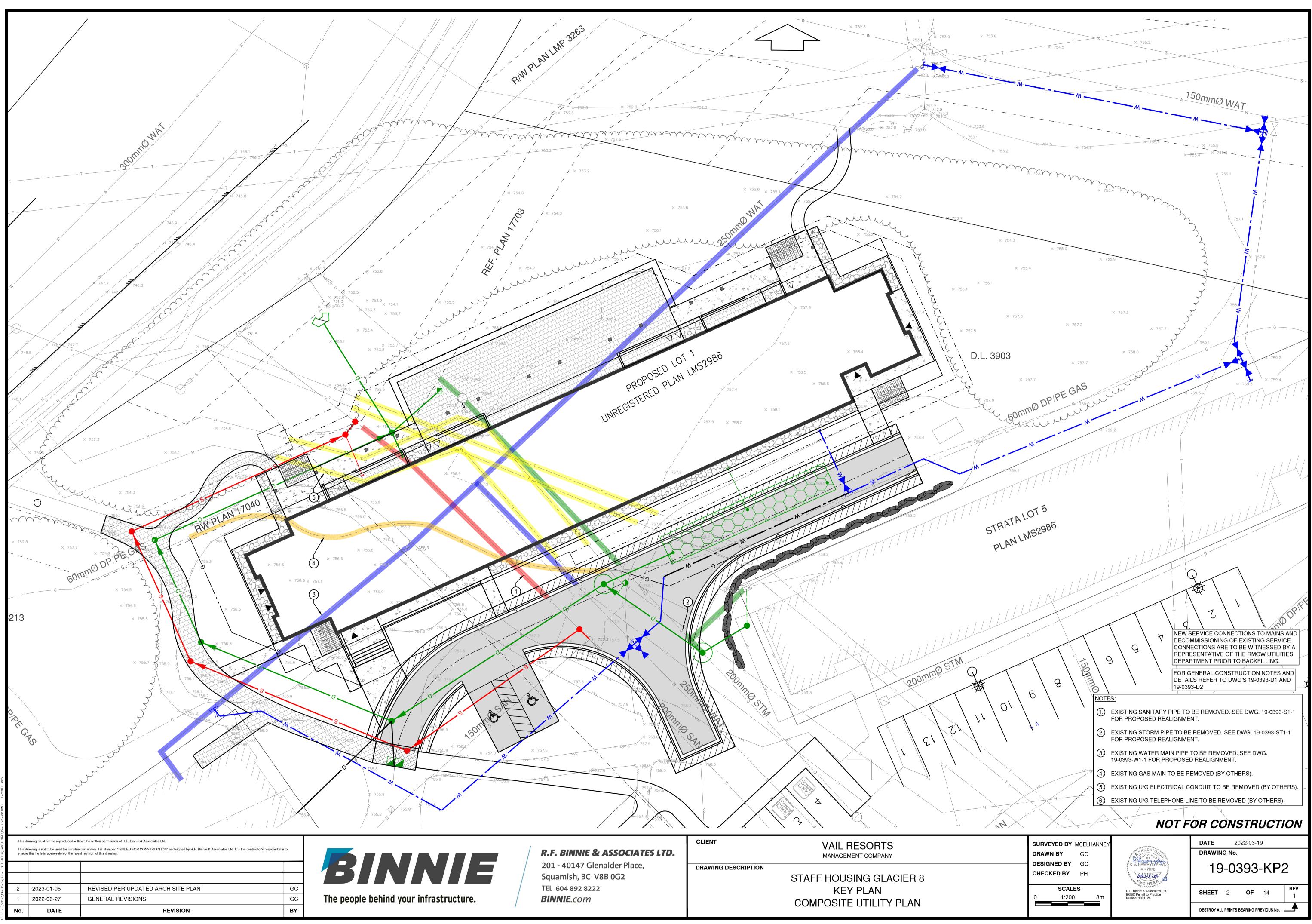
VAIL RESORTS MANAGEMENT COMPANY STAFF HOUSING GLACIER 8 NOT FOR CONSTRUCTION

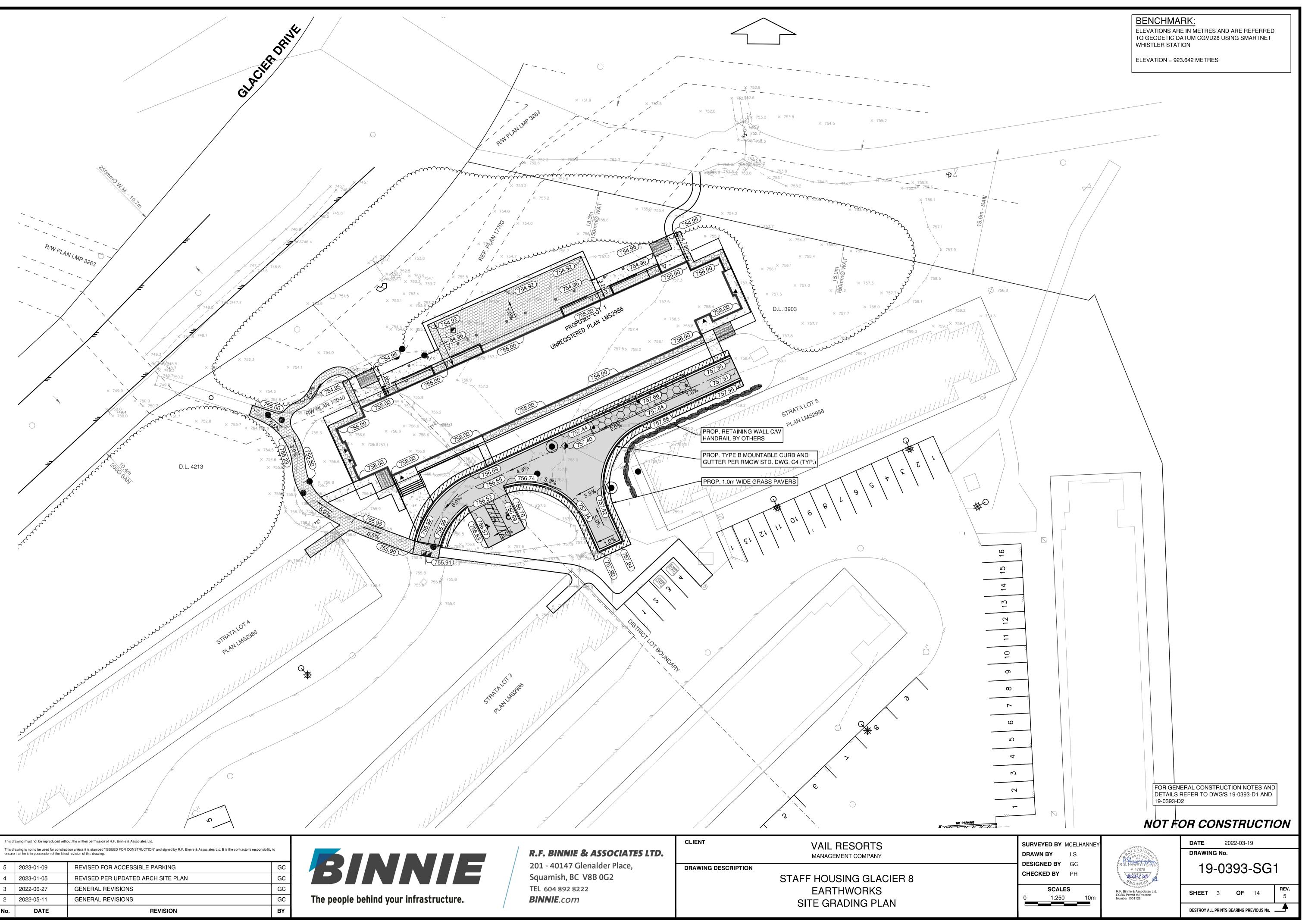
LEGEND						
EXISTING	PROPOSED	DESCRIPTION	EXISTING PROPOSED		DESCRIPTION	
– – – – – – –		IRON PROPERTY PIN	W	w	WATERMAIN	
		BUILDING	· ·	_·_·•·	WATER SERVICE CONNECTION	
		EDGE OF PAVEMENT	W	₩ 	WATER VALVE	
		CURB & GUTTER	W		AIR VALVE	
		TRUCK ROUTE		│ ो ▶ · – ♦ [∺]	HYDRANT & VALVE ASSEMBLY	
-ss	•sss	SANITARY SEWER			YARD HYDRANT	
O	•	SANITARY CONNECTION & INSPECTION CHAMBER	W		CAPPED END	
——— D ——		STORM SEWER	— · — · —M— · —	— · — · –M— · —	WATER METER	
		STORM CONNECTION & INSPECTION CHAMBER	W	₩	BLOW-OFF	
		CATCH BASIN / LAWN BASIN LEAD	TTT	— T — T -	UNDERGROUND TELEPHONE & MANHOLE	
— — — — FD—	— — — — —FD-	FRENCH DRAIN	EE	— Е — Е- — -	UNDERGROUND ELECTRICAL & MANHOLE	
O ^{CO} D <i>_</i>	D	STORM SEWER & CLEANOUT	G G	—GG	GASMAIN	
		CATCH BASIN - TOP INLET & SIDE INLET	LL	LL	TRAFFIC SIGNAL & STREET LIGHT U/G DUCTS	
\oslash	Ø	LAWN DRAIN	—— H ——— H ———	— н—— н——	HYDRO U/G DUCTS	
	Ø	CATCH BASIN MANHOLE	CATV	CATV	CABLE TV U/G DUCTS	
		SWALE	O.☆-	●★	ORNAMENTAL STREET LIGHT - DAVIT	
	$\cdot \sim \cdot \cdot \sim \cdot \cdot \sim \cdot \cdot$	DITCH	Ċ.	*	ORNAMENTAL STREET LIGHT - POST TOP	
		SIDEWALK (ASPHALT)	-O ^{UP}	UP	UTILITY POLE	
		SIDEWALK (CONCRETE)	00	••	UTILITY POLE W/ LIGHT	
		RETAINING WALL	J	J	JUNCTION BOX	
			× ^{3,51}	9.270	GROUND ELEVATION	
					DIRECTION OF OVERLAND FLOW	

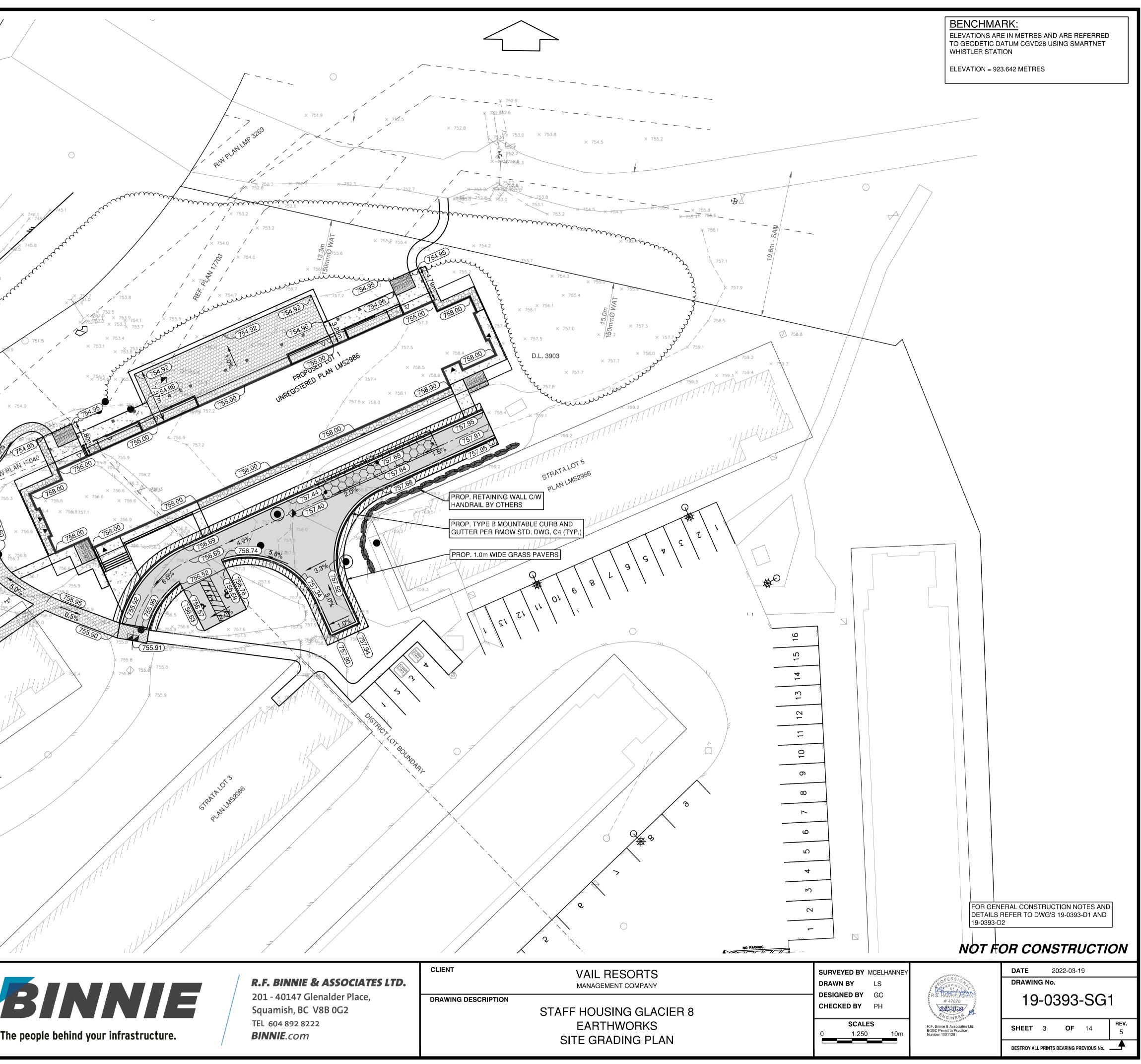


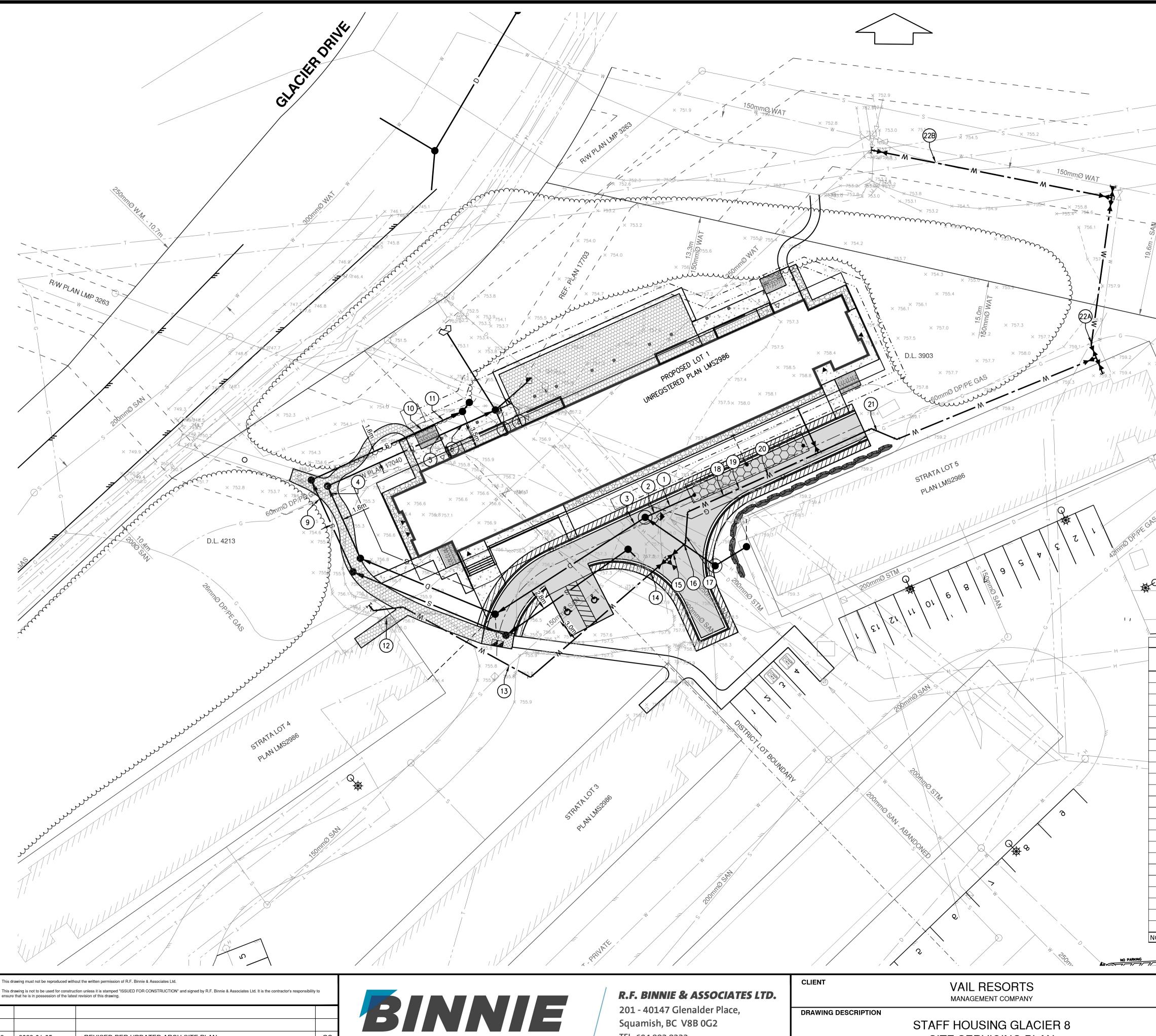
DRAWING INDEX								
SHEET #	DRAWING TYPE	DRAWING TITLE	DWG #	REV				
1	KEY PLAN	OVERALL PLAN	19-0393-KP1	1				
2	KEY PLAN	COMPOSITE UTILITY PLAN	19-0393-KP2	1				
3	EARTHWORKS	SITE GRADING PLAN	19-0393-SG1	5				
4	SITE SERVICING PLAN	PIPE CROSSINGS	19-0393-XC1	2				
5	STORMWATER MANAGEMENT PLAN	PRE-DEVELOPMENT	19-0393-SWMP1	1				
6	STORMWATER MANAGEMENT PLAN	POST-DEVELOPMENT	19-0393-SWMP2	2				
7	SEWER SYSTEM	SANITARY	19-0393-S1-1	2				
8	SEWER SYSTEM	STORM	19-0393-ST1-1	2				
9	WATERMAIN	SHEET 1 OF 2	19-0393-W1-1	2				
10	WATERMAIN	SHEET 2 OF 2	19-0393-W1-2	1				
11	GENERAL	CONSTRUCTION NOTES AND DETAILS	19-0393-D1	1				
12	GENERAL CONSTRUCTION NOTES	TYPICAL SECTIONS AND DETAILS	19-0393-D2	1				
13	EROSION AND SEDIMENT	CONTROL PLAN	19-0393-ESC1	1				
14	EROSION AND SEDIMENT CONTROL PLAN	NOTES AND DETAILS	19-0393-ESC2	1				


SITE PLAN N. T. S.


R.F. BINNIE & ASSOCIATES LTD. 201 - 40147 Glenalder Place, Squamish, BC V8B 0G2 TEL 604 892 8222 **BINNIE**.com






2023-01-24 3:00:01 PMUSER: LDSNOW 2019\19-0393\00 - CAD FILES\DWG\FINAL\19-0393-KP.DWG LAYOUT: KP1

This dr	This drawing must not be reproduced without the written permission of R.F. Binnie & Associates Ltd.					
	This drawing is not to be used for construction unless it is stamped "ISSUED FOR CONSTRUCTION" and signed by R.F. Binnie & Associates Ltd. It is the contractor's responsibility to ensure that he is in possession of the latest revision of this drawing.					
5	2023-01-09 REVISED FOR ACCESSIBLE PARKING GC					
4	2023-01-05 REVISED PER UPDATED ARCH SITE PLAN GC					
3	3 2022-06-27 GENERAL REVISIONS GC					
2	2 2022-05-11 GENERAL REVISIONS GC					
No.	No. DATE REVISION BY					

This dr	This drawing must not be reproduced without the written permission of R.F. Binnie & Associates Ltd.				
	This drawing is not to be used for construction unless it is stamped "ISSUED FOR CONSTRUCTION" and signed by R.F. Binnie & Associates Ltd. It is the contractor's responsibility to ensure that he is in possession of the latest revision of this drawing.				
2	2023-01-05	REVISED PER UPDATED ARCH SITE PLAN	GC		
1	2022-06-27	GENERAL REVISOINS	GC		
No.	DATE	REVISION	BY		

	R.F. BINNIE & ASSOCIATES LTD.	CLIENT VAIL RESORTS MANAGEMENT COMPANY
/	201 - 40147 Glenalder Place,	DRAWING DESCRIPTION
	Squamish, BC V8B 0G2	STAFF HOUSING GLACIER 8
	TEL 604 892 8222	SITE SERVICING PLAN
/	BINNIE.com	PIPE CROSSINGS

				ELEVATIC TO GEOD	HMARK: DNS ARE IN ME ETIC DATUM C R STATION		
				ELEVATIC)N = 923.642 MI	ETRES	
			Τ		1		
	T —		T				
	T				5-		
				s			
- S -							
				250mm WAT	/		
	W			6			
			A				
/		/					
					T		
				/			
			D				
			3				
	/	-1	/				
A 758	3.8	+	\sim				
	/						
19.3 \	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~						
	c Commo						
\rangle /		REC		\ \ \			
M		279 S	\	\mathbf{v}			
	Χ /	G					
	7						
		G					
		/			`\		
				3 / /			
G					7		
					ECORD DRAWI	NGS AND RM	
/				AND L	_OCATIONS OF	ALL EXISTING	T ELEVATIONS G UNDERGROUND
				LOCA	TIONS TO BE E	EXPOSED PRIC	
				CROS			GNMENT AND DTIFIED OF ANY
)					REPANCIES.		
					R GENERAL CO TAILS REFER 1		
				19-	0393-D2		
			UTILITY	CROSSING TA			
					(DEC		
		PIPE 1			PIPE 2		-
	TYPE PR_STM	DIA. (mm)	INV. (m)	TYPE EX.GAS	PIPE 2 DIA. (mm)	INV. (m)	SEPARATION (m)
TAG 1 2	TYPE PR. STM. PR. STM.		INV. (m) 754.94 754.94	TYPE EX. GAS EX. HYDRO	PIPE 2	INV. (m) 757.47 756.99	SEPARATION (m) 2.34 1.86
1 2 3	PR. STM. PR. STM. PR. STM.	DIA. (mm) 200 200 250	754.94 754.94 754.85	EX. GAS EX. HYDRO EX. HYDRO	PIPE 2 DIA. (mm) 60 - -	757.47 756.99 756.78	2.34 1.86 1.68
1 2 3 4	PR. STM. PR. STM. PR. STM. PR. STM.	DIA. (mm) 200 200 250 250	754.94 754.94 754.85 753.78	EX. GAS EX. HYDRO EX. HYDRO EX. GAS	PIPE 2 DIA. (mm) 60 - - 60	757.47 756.99 756.78 754.11	2.34 1.86 1.68 0.08
1 2 3	PR. STM. PR. STM. PR. STM.	DIA. (mm) 200 200 250	754.94 754.94 754.85	EX. GAS EX. HYDRO EX. HYDRO	PIPE 2 DIA. (mm) 60 - -	757.47 756.99 756.78	2.34 1.86 1.68
2 3 4 5 6 7	PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. STM.	DIA. (mm) 200 200 250 250 300 300 300	754.94 754.94 754.85 753.78 753.44 753.39 753.27	EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. HYDRO EX. HYDRO EX. TELUS	PIPE 2 DIA. (mm) 60 - - 60 - - - -	757.47 756.99 756.78 754.11 754.57 754.82 755.21	2.34 1.86 1.68 0.08 0.83 1.13 1.63
1 2 3 4 5 6 7 8	PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. STM.	DIA. (mm) 200 200 250 250 300 300 300 300	754.94 754.94 754.85 753.78 753.44 753.39 753.27 753.27	EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. HYDRO EX. HYDRO EX. TELUS EX. TELUS	PIPE 2 DIA. (mm) 60 - - 60 - - - - - -	757.47 756.99 756.78 754.11 754.57 754.82 755.21 755.12	2.34 1.86 1.68 0.08 0.83 1.13 1.63 1.56
1 2 3 4 5 6 7	PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. STM.	DIA. (mm) 200 200 250 250 300 300 300	754.94 754.94 754.85 753.78 753.44 753.39 753.27	EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. HYDRO EX. HYDRO EX. TELUS	PIPE 2 DIA. (mm) 60 - - 60 - - - -	757.47 756.99 756.78 754.11 754.57 754.82 755.21	2.34 1.86 1.68 0.08 0.83 1.13 1.63
1 2 3 4 5 6 7 8 9 10 11	PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. SAN. PR. SAN. PR. SAN.	DIA. (mm) 200 200 250 250 300 300 300 300 200 200 200 200	754.94 754.94 754.85 753.78 753.44 753.39 753.27 753.27 753.27 752.07 751.93 751.91	EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. HYDRO EX. TELUS EX. TELUS EX. GAS EX. HYDRO EX. HYDRO	PIPE 2 DIA. (mm) 60 - - 60 - - - 60 - 60 - -	757.47 756.99 756.78 754.11 754.57 754.82 755.21 755.12 755.12 757.47 754.34 754.52	2.34 1.86 1.68 0.08 0.83 1.13 1.63 1.56 5.20 2.21 2.40
1 2 3 4 5 6 7 8 9 10 11 12	PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. SAN. PR. SAN. PR. SAN. PR. SAN. PR. SAN.	DIA. (mm) 200 200 250 300 300 300 300 200 200 200 250	754.94 754.94 754.85 753.78 753.44 753.39 753.27 753.27 753.27 752.07 751.93 751.91 753.81	EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. HYDRO EX. TELUS EX. TELUS EX. TELUS EX. GAS EX. HYDRO EX. HYDRO EX. HYDRO	PIPE 2 DIA. (mm) 60 - - 60 - - - 60 - - 60 - - 26	757.47 756.99 756.78 754.11 754.57 754.82 755.21 755.12 755.12 757.47 754.34 754.34 754.52 757.51	2.34 1.86 1.68 0.08 0.83 1.13 1.63 1.56 5.20 2.21 2.40 3.45
1 2 3 4 5 6 7 8 9 10 11	PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. STM. PR. SAN. PR. SAN. PR. SAN.	DIA. (mm) 200 200 250 250 300 300 300 300 200 200 200 200	754.94 754.94 754.85 753.78 753.44 753.39 753.27 753.27 753.27 752.07 751.93 751.91	EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. HYDRO EX. TELUS EX. TELUS EX. GAS EX. HYDRO EX. HYDRO	PIPE 2 DIA. (mm) 60 - - 60 - - - 60 - 60 - -	757.47 756.99 756.78 754.11 754.57 754.82 755.21 755.12 755.12 757.47 754.34 754.52	2.34 1.86 1.68 0.08 0.83 1.13 1.63 1.56 5.20 2.21 2.40
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15	PR. STM. PR. SAN. PR. SAN. PR. W.M. PR. W.M. PR. W.M. PR. W.M.	DIA. (mm) 200 200 250 300 300 300 300 200 200 200 20	754.94 754.94 754.85 753.78 753.44 753.39 753.27 753.27 753.27 752.07 751.93 751.91 753.81 753.81 753.90 754.36 754.42	EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. HYDRO EX. HYDRO EX. TELUS EX. TELUS EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. SAN. EX. SAN. EX. SAN.	PIPE 2 DIA. (mm) 60 - - 60 - - - 60 - - 60 - 26 150 200 -	757.47 756.99 756.78 754.11 754.57 754.82 755.21 755.21 755.12 757.47 754.34 754.52 757.51 753.14 753.14 752.60 757.33	2.34 1.86 1.68 0.08 0.83 1.13 1.63 1.56 5.20 2.21 2.40 3.45 0.61 1.56 2.66
1 2 3 4 5 6 7 8 9 10 11 12 13 14	PR. STM. PR. SAN. PR. SAN. PR. SAN. PR. W.M. PR. W.M. PR. W.M. PR. W.M. PR. W.M.	DIA. (mm) 200 200 250 300 300 300 300 200 200 200 20	754.94 754.94 754.85 753.78 753.44 753.39 753.27 753.27 752.07 751.93 751.91 753.81 753.81 753.90 754.36 754.42 754.42	EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. HYDRO EX. HYDRO EX. TELUS EX. TELUS EX. GAS EX. HYDRO EX. HYDRO EX. HYDRO EX. GAS EX. SAN. EX. SAN.	PIPE 2 DIA. (mm) 60 - - 60 - - - 60 - - 60 - - 26 150 200	757.47 756.99 756.78 754.11 754.57 754.82 755.21 755.21 755.12 757.47 754.34 754.34 754.52 757.51 753.14 753.14 752.60 757.33 755.19	2.34 1.86 1.68 0.08 0.83 1.13 1.63 1.56 5.20 2.21 2.40 3.45 0.61 1.56 2.66 0.52
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16	PR. STM. PR. SAN. PR. SAN. PR. W.M. PR. W.M. PR. W.M. PR. W.M.	DIA. (mm) 200 200 250 300 300 300 200 200 200 200 20	754.94 754.94 754.85 753.78 753.44 753.39 753.27 753.27 753.27 752.07 751.93 751.91 753.81 753.81 753.90 754.36 754.42	EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. HYDRO EX. HYDRO EX. TELUS EX. TELUS EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. SAN. EX. SAN. EX. SAN. EX. SAN.	PIPE 2 DIA. (mm) 60 - - 60 - - - 60 - - 60 - - 26 150 200 - 200 - 250	757.47 756.99 756.78 754.11 754.57 754.82 755.21 755.21 755.12 757.47 754.34 754.52 757.51 753.14 753.14 752.60 757.33	2.34 1.86 1.68 0.08 0.83 1.13 1.63 1.56 5.20 2.21 2.40 3.45 0.61 1.56 2.66
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19	PR. STM. PR. SAN. PR. SAN. PR. SAN. PR. W.M.	DIA. (mm) 200 200 250 300 300 300 200 200 200 200 20	754.94 754.94 754.85 753.78 753.78 753.27 753.27 753.27 752.07 751.93 751.91 753.81 753.81 753.90 754.36 754.42 754.42 754.42 754.47 754.87 754.98	EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. HYDRO EX. HYDRO EX. TELUS EX. TELUS EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. SAN. EX. SAN. EX. SAN. EX. SAN. EX. HYDRO PR. STM. EX. HYDRO EX. HYDRO	PIPE 2 DIA. (mm) 60 - - 60 - - - 60 - - 60 - - 26 150 200 - 200 - 250 - 250 - - 250 - -	757.47 756.99 756.78 754.11 754.57 754.82 755.21 755.12 757.47 754.34 754.52 757.51 753.14 753.14 752.60 757.33 755.19 757.59 757.97 757.77	$\begin{array}{c} 2.34 \\ 1.86 \\ 1.68 \\ 0.08 \\ 0.83 \\ 1.13 \\ 1.63 \\ 1.56 \\ 5.20 \\ 2.21 \\ 2.40 \\ 3.45 \\ 0.61 \\ 1.56 \\ 2.66 \\ 0.52 \\ 2.88 \\ 2.85 \\ 2.54 \end{array}$
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18	PR. STM. PR. SAN. PR. SAN. PR. W.M.	DIA. (mm) 200 200 250 300 300 300 200 200 200 200 20	754.94 754.94 754.85 753.78 753.44 753.39 753.27 753.27 752.07 751.93 751.91 753.81 753.81 753.90 754.36 754.42 754.42 754.42 754.47 754.87	EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. HYDRO EX. HYDRO EX. TELUS EX. TELUS EX. GAS EX. HYDRO EX. HYDRO EX. SAN. EX. SAN. EX. SAN. EX. HYDRO PR. STM. EX. HYDRO EX. HYDRO	PIPE 2 DIA. (mm) 60 - - 60 - - - 60 - - 26 150 200 - 200 - 250 - 250 -	757.47 756.99 756.78 754.11 754.57 754.82 755.21 755.21 755.12 757.47 754.34 754.52 757.51 753.14 753.14 752.60 757.33 755.19 757.59 757.97	2.34 1.86 1.68 0.08 0.83 1.13 1.63 1.56 5.20 2.21 2.40 3.45 0.61 1.56 2.66 0.52 2.88 2.85
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20	PR. STM. PR. SAN. PR. SAN. PR. W.M.	DIA. (mm) 200 200 250 300 300 300 200 200 200 200 20	754.94 754.94 754.85 753.78 753.44 753.39 753.27 753.27 753.27 752.07 751.93 751.91 753.81 753.81 753.90 754.36 754.42 754.42 754.42 754.47 754.87 754.87 754.98 755.18	EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. HYDRO EX. HYDRO EX. TELUS EX. TELUS EX. GAS EX. GAS EX. GAS EX. SAN. EX. SAN. EX. SAN. EX. HYDRO PR. STM. EX. HYDRO EX. TELUS EX. TELUS EX. TELUS	PIPE 2 DIA. (mm) 60 - - 60 - - - 60 - - 26 150 200 - 250 - 250 - 250 - - 250 - - 250 - - 250 - - 250 - - 250 - - 250 - - 250 - - - 250 - - - - 250 - - - - - - - - - - - - - - - - - - -	757.47 756.99 756.78 754.11 754.57 754.82 755.21 755.22 757.47 754.34 754.52 757.51 753.14 752.60 757.33 755.19 757.33 755.19 757.59 757.77 757.77	2.34 1.86 1.68 0.08 0.83 1.13 1.63 1.56 5.20 2.21 2.40 3.45 0.61 1.56 2.66 0.52 2.88 2.88 2.85 2.54 2.28
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22A 22B	PR. STM. PR. SAN. PR. SAN. PR. W.M. PR. W.M.	DIA. (mm) 200 200 250 300 300 300 200 200 200 200 20	754.94 754.85 753.78 753.78 753.44 753.27 753.27 753.27 753.27 753.27 753.27 753.27 753.27 753.27 753.27 753.27 753.90 754.91 754.36 754.42 754.42 754.42 754.87 755.18 755.91 756.32 751.65	EX. GAS EX. HYDRO EX. HYDRO EX. GAS EX. HYDRO EX. HYDRO EX. TELUS EX. TELUS EX. GAS EX. GAS EX. SAN. EX. SAN. EX. SAN. EX. SAN. EX. HYDRO PR. STM. EX. HYDRO EX. TELUS EX. TELUS EX. TELUS EX. GAS EX. GAS EX. GAS	PIPE 2 DIA. (mm) 60 - - 60 - - - 60 - - 26 150 200 - 200 - 250 - 250 - - 250 - - 250 - - 250 - - 250 - - 250 - - 60 60 60 60 60 60 60 60	757.47 756.99 756.78 754.11 754.57 754.82 755.21 755.21 755.12 757.47 754.34 754.52 757.51 753.14 752.60 757.33 755.19 757.33 755.19 757.59 757.77 757.77 757.71 758.23 758.02 752.90	$\begin{array}{c} 2.34 \\ 1.86 \\ 1.68 \\ 0.08 \\ 0.83 \\ 1.13 \\ 1.63 \\ 1.56 \\ 5.20 \\ 2.21 \\ 2.40 \\ 3.45 \\ 0.61 \\ 1.56 \\ 2.66 \\ 0.52 \\ 2.88 \\ 2.85 \\ 2.54 \\ 2.28 \\ 2.28 \\ 2.08 \\ 1.45 \\ 1.00 \\ \end{array}$

SURVEYED BY	MCELHANNEY
DRAWN BY	GC
DESIGNED BY	GC
CHECKED BY	PH
SCAL	ES
0 1:250	0 10m

DATE	2022	-03-1	9					
DRAWING	DRAWING No.							
19	19-0393-XC1							
SHEET 4 OF 14 2								
DESTROY ALL PRINTS BEARING PREVIOUS No.								

DATE

No.

Calculations

Project Name:	WB Staff Housing
Description:	Detention Volume Requirements

PRE-DEVELOPMENT -10 YEAR RETURN

	_		
Runoff Coefficient	$R_{AVG} =$	0.4	
Catchment Area	A =	1.001	ha
Time of Concentration	Tc =	10.0	minutes
Storm Frequency		10	year storm
Intensity	= [21.8	mm/hr
Release Rate - 10 yr return	$Q_{10} =$	0.024	m ³ /s
Maximum Release Rate (80% of Q ₁₀)	$Q_{rel} =$	0.019	m ³ /s

POST DEVELOPMENT - 10 YEAR RETURN

$R_{AVG} =$	0.7
A =	1.00
Tc =	8
	A =

Hyd No.	Duration, Tr (minutes)	Rainfall Intensity, l (mm/h)	Peak Flow, Q _p (m ³ /s)	Inflow Runoff Volume (m ³)	Max Release Rate, Q _{rel} (m ³ /s)	Required Storage Volume (m ³)
1	8	28.8	0.060	28.8	0.0194	19.49
2	10	26.1	0.055	32.7	0.0194	21.23
3	15	22.0	0.046	41.2	0.0194	24.25
4	20	19.4	0.040	48.6	0.0194	26.06
5	30	16.3	0.034	61.3	0.0194	27.51
6	40	14.4	0.030	72.2	0.0194	27.2
7	60	12.1	0.025	91.0	0.0194	23.3
8	120	9.0	0.019	135.2	0.0194	-
9	180	7.6	0.016	170.4	0.0194	-
10	240	6.7	0.014	200.8	0.0194	-
11	360	5.6	0.012	253.1	0.0194	-
12	720	4.2	0.009	376.0	0.0194	-
13	960	3.7	0.008	443.1	0.0194	-
14	1200	3.4	0.007	503.4	0.0194	-
15	1440	3.1	0.006	558.6	0.0194	-

<u>LEGEND</u>

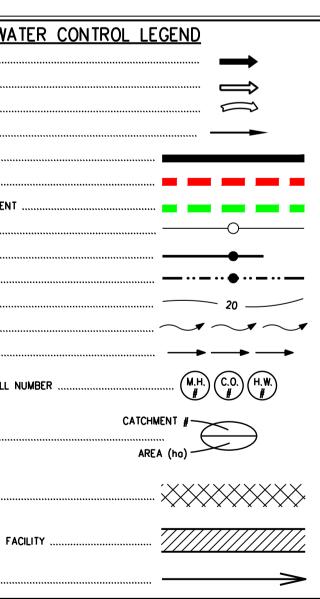
• • •

BUILDING AREA (C=0.9)

IMPERMEABLE AREA (C=0.9)

VEGETATED AREA (C=0.3)

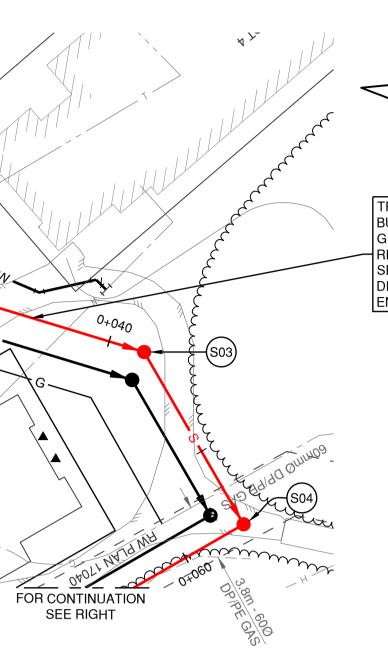
STORMWA
100 YEAR OVERLAND FLOW
100 YEAR FLOW IN PIPE
OVERLAND FLOW
LOT GRADING
BASIN BOUNDARY LINE
CATCHMENT PRE DEVELOPMENT
SUB CATCHMENT POST DEVELOPMEN
EXISTING STORM SEWER
PROPOSED STORM SEWER
FUTURE STORM SEWER
EXISTING CONTOURS
EXISTING DITCHES
PROPOSED SWALES
MANHOLE, CLEANOUT OR HEADWALL
CATCHMENT AREA
EXISTING DETENTION AREA
PROPOSED COMMUNITY DETENTION F
CATCHMENT FLOW DIRECTION

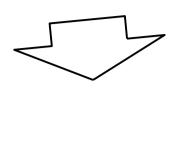

FOR DETA 19-03

VAIL RESORTS MANAGEMENT COMPANY

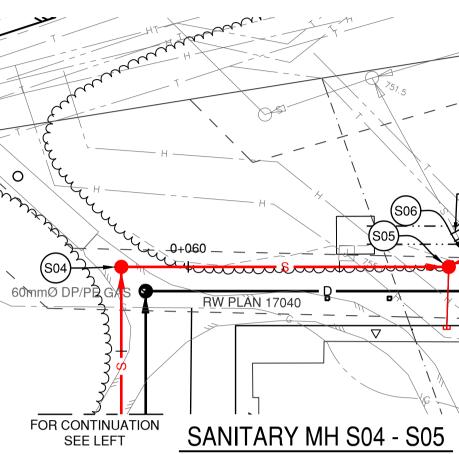
STAFF HOUSING GLACIER 8 STORMWATER MANAGEMENT PLAN POST-DEVELOPMENT

	BENCHMARK:
	ELEVATIONS ARE IN METRES AND ARE REFERRED TO GEODETIC DATUM CGVD28 USING SMARTNET WHISTLER STATION
Project #: 19-0393-05	ELEVATION = 923.642 METRES
Date: 24-May-22	


75	
01	ha
3.0	minutes
10	year storm

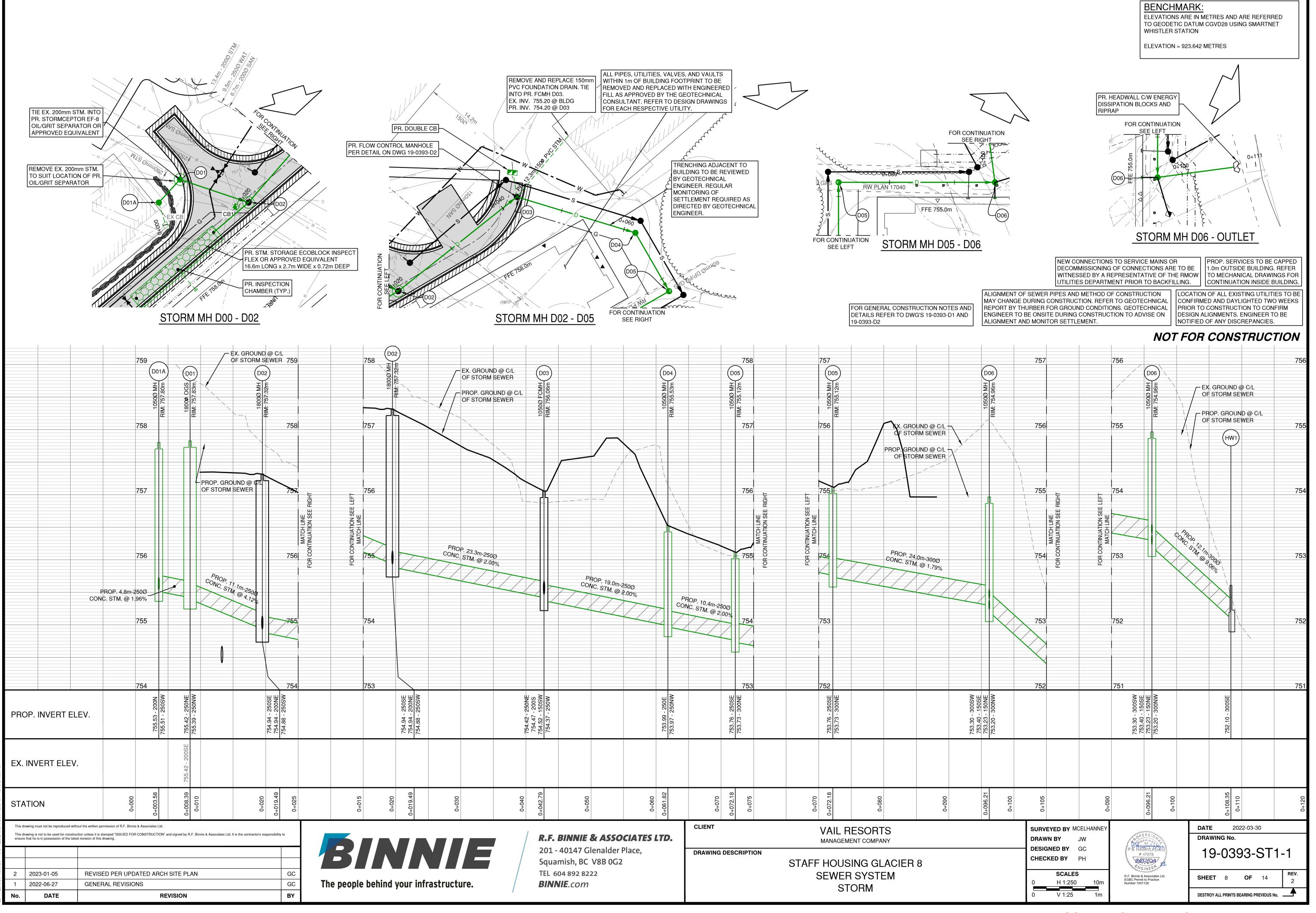


CONSTRUCTION NOTES AND R TO DWG'S 19-0393-D1 AND	NOT F	OR CONSTRUCTION
SURVEYED BYMCELHANNEYDRAWN BYLSDESIGNED BYPHCHECKED BYPH	P. O. HAWRYLYSHYN # 47678	DATE 2019-12-17 DRAWING No. 19-0393-SWMP2
SCALES 0 1:250 10m	R.F. Binnie & Associates Ltd. EGBC Permit to Practice Number 1001128	SHEET 6 OF 14 REV. 2
		DESTROY ALL PRINTS BEARING PREVIOUS No.

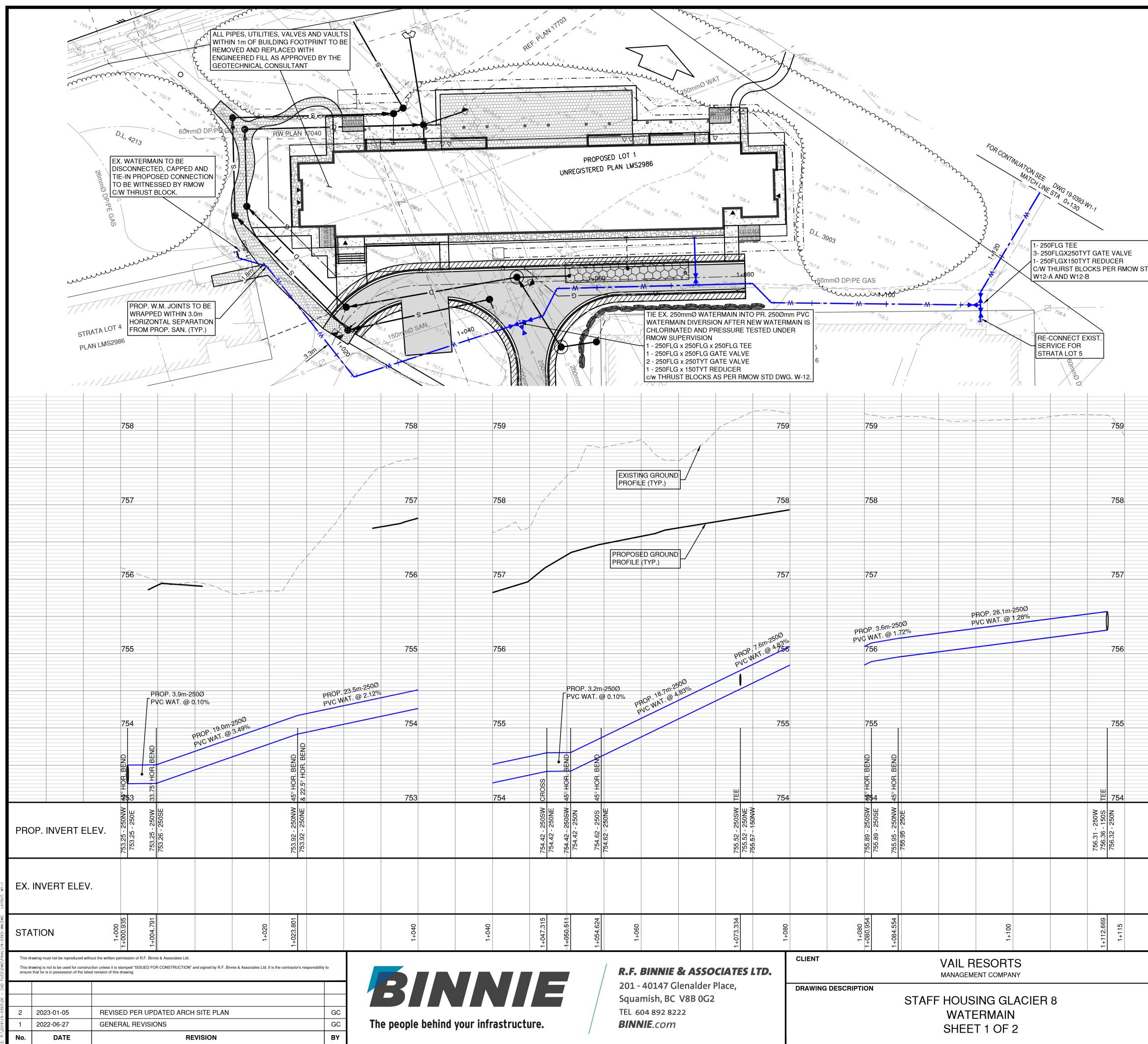

Total 758 1	
758 01809825 Webclaver 758 0190925 Webclaver 758 019092 Webclaver 758 756 018092 Webclaver 757 757 757 010000 Webclaver 756 756 756 756 01000 Webclaver 01000 Webclaver 756 756 756 757 757 01000 Webclaver 756 756 756 756 756	
757 Image: constraint of the second	
757 Image: constraint of the second	
757 Image: constraint of the second	
757 Image: constraint of the second	
757 757 757 757 757 1	
1 1 <td></td>	
1 1 <td></td>	
1 1 <td></td>	
PROP. GROUND @ C/L Ex. GROUND @ C/L<	
1 1	
Image: Star Star Star Star Star Star Star Star	
751 751 751 751 751 751 751 751 751 751	
第1111日本 第111日本	
752.1 752.2 50.6 51.6 51.6 51.6 51.6 51.6	
DETAILS REFER TO DWG'S 19-0393	D1 AND
	CTION
This drawing must not be reproduced without the written permission of R.F. Binnie & Associates Ltd. CLIENT DATE 2022-03-20 This drawing is not to be used for construction unless it is stamped "ISSUED FOR CONSTRUCTION" and signed by R.F. Binnie & Associates Ltd. It is the contractor's responsibility to DATE 2022-03-20	
This drawing is not to be used for construction unless it is stamped "ISSUED FOR CONSTRUCTION" and signed by R.F. Binnie & Associates Ltd. It is the contractor's responsibility to ensure that he is in possession of the latest revision of this drawing. R.F. BINNIE & ASSOCIATES LTD. MANAGEMENT COMPANY	
Inite drawing is not to be used for Obstruction draws of the lasser for South Port Construction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction and signed by H-P. Binnie & Associates LtD. Drawing is not to be used for Obstruction	21_1
Squamish, BC V8B 0G2 CHECKED BY PH	ו ⁻ ו כ
	REV.
	4 2
SANITARY	
No. DATE REVISION BY	

SANITARY MH S01 - S04

TRENCHING ADJACENT TO BUILDING TO BE REVIEWED BY GEOTECHNICAL ENGINEER. REGULAR MONITORING OF SETTLEMENT REQUIRED AS DIRECTED BY GEOTECHNICAL ENGINEER.



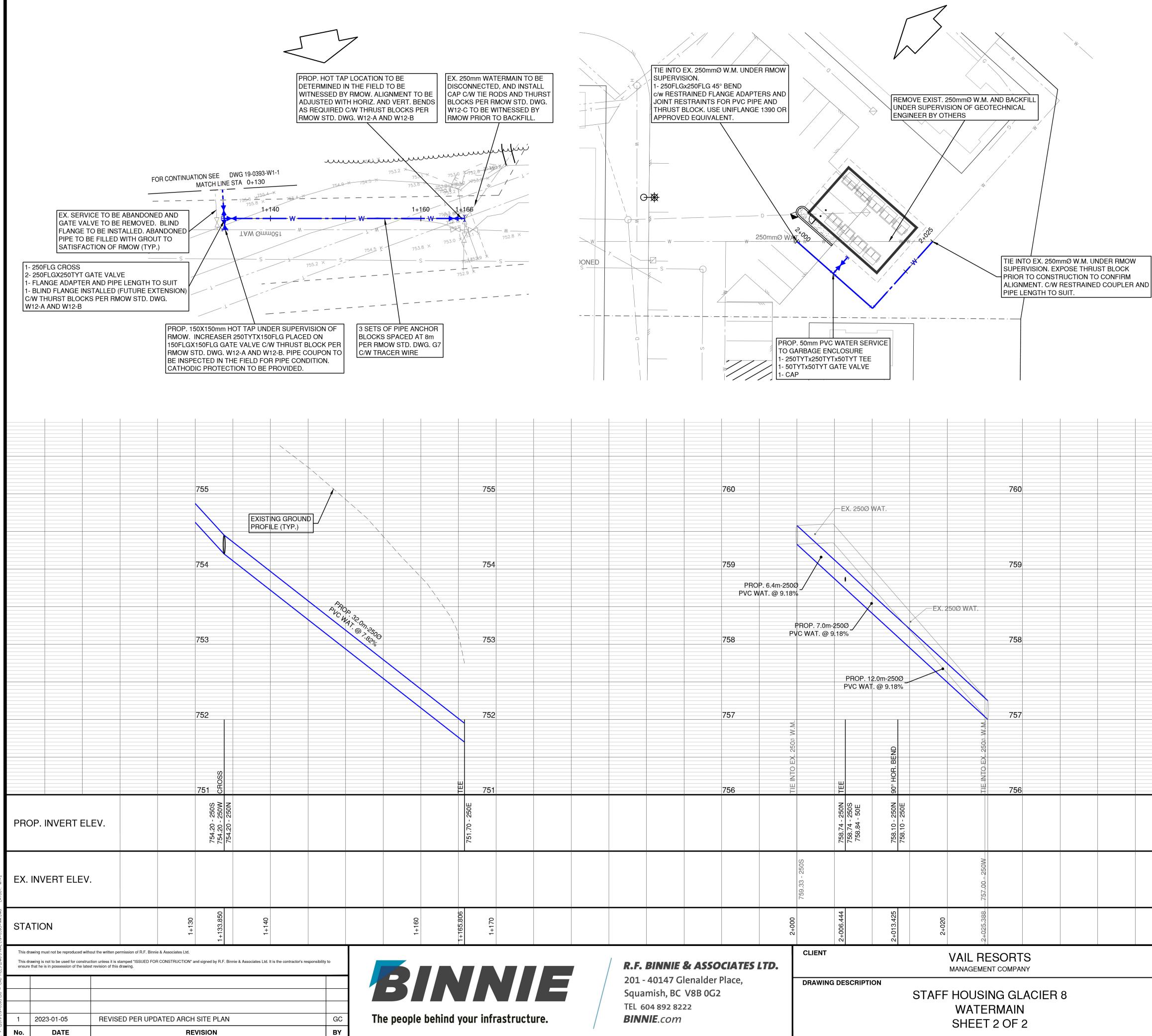
ISSUED FOR DEVELOPMENT PERMIT


ELEVATIONS ARE IN METRES AND ARE REFERRED TO GEODETIC DATUM CGVD28 USING SMARTNET WHISTLER STATION

ELEVATION = 923.642 METRES

BENCHMARK:

D: 2023-01-24 3:09:29 PM USER: LDSNOW



												AREA	JST BLOCK AS TO BE CO I ENGINEER	DNFIRMED
TD. DWG.												IOTES AND	AL CONSTRU DETAILS RE 93-D1 AND 1	FER TO
											J(DINT RESTR SE UNIFLAN	O BE INSTA AINTS FOR IGE SERIES QUIVALENT	PVC PIPE. 1390 OR
								RECORD D CONTRAC ⁻ LOCATION PRIOR TO BE EXPOSI ALIGNMEN	RAW TOR S OF CONS ED PI	ings fo ve all i stru rior d cr	ERI EXI ICT TC	ND RMOW G FIY INVERT STING UND ION. ALL TIE CONSTRU	ELEVATION ERGROUND E-IN LOCATIO CTION TO CO GINEER TO E	S AND UTILITIES DNS TO DNFIRM
								NOT	F	OF	?	CONS	TRUC	TION
		759	``\											759
					\ \									
					`\ \									
		758												758
		757												757
		PROP.	1 7m-'	250	Ø									
	P	VC WA	Т. @	0.5	0%									
					\backslash									
		756			\frown		•							756
						\backslash	ALC W	8. 19. 19. 19. 19. 19. 19. 19. 19. 19. 19						
								· @ 10, 300						
		755						9 ³⁰ 0						755
		100												1,55
				. BEND										
				5° HOR.						SS.				
		754⊢		33.75°						CROSS				754
		756.31 - 250W 756.36 - 150S	- 250N	- 250S	- 250N						- 250N			
		756.31 756.36	756.32	756.32 - 250S	756.32 - 250N					754.20 - 250S 754.20 - 250W	754.20			
	1+110	1+112.669		14.418	1+120					1+133.850		1+140		1+150
				 + 							۸ -		2-03-20	- ÷
	DRAW DESIG		BY	Cel JW GC PH		الواودودر وليليم	P. S. HAW	SS/0 VIN 0 1 1 1 1 1 1 1 1 1 1 1 1 1				WING No.	93-W ⁻	1-1
	0		ALES		10	EG	F. Binnie & BC Permit			S	HE	ET 9	OF 14	REV.
	0 0		1:250 1:25		10m 1m		mber 1001			DE	STR	OY ALL PRINTS BE	ARING PREVIOUS	
	-													

BENCHMARK:

ELEVATION = 923.642 METRES

ELEVATIONS ARE IN METRES AND ARE REFERRED TO GEODETIC DATUM CGVD28 USING SMARTNET WHISTLER STATION

	7	760		— EX. 250Ø W	AT.			760		
		759						759		
		PROP. 6.4m-250 PVC WAT. @ 9.18		-		-EX. 2	50Ø WAT.			
	7	758 P	₽ROP. 7.0m-; VC WAT. @ 9	250Ø .18%				758		
	7	757		PROP. 12. PVC WAT.	0m-250Ø @ 9.18%			757		
		M M M			HOR. BEND		INTO EX. 2500 W.M.			
	7	Z56 ⊑		758.74 - 250N TEE 758.74 - 250S 758.84 - 50E	758.10 - 250N 90° Hu 758.10 - 250E			756		
			759.33 - 250S	758	758		757.00 - 250W			
		-000		2+006.444	2+013.425	2+020	2+025.388 757			
	R.F. BINNIE & ASSOC 201 - 40147 Glenalder Pl		CLIENT				VAIL RE			
- /	Squamish, BC V8B 0G2 TEL 604 892 8222 BINNIE .com	исс,	DRAWING	i DESCRIPTIO		STAFF	HOUSIN WATEF		ER 8	

BENCHMARK:

MONUMENT XXXXXX LOCATED AT INTERSECTION OF XXXXX AVENUE AND XXXXX STREET ELEV. = 0.000m (CVD28GVRD2018) MONUMENT XXXXXX LOCATED AT INTERSECTION OF XXXXX AVENUE AND XXXXX STREET ELEV. = 0.000m (CVD28GVRD2018)

> ALL BENDS TO BE INSTALLED C/W JOINT RESTRAINTS FOR PVC PIPE. USE UNIFLANGE SERIES 1390 OR APPROVED EQUIVALENT.

ALL EXISTING UTILITIES ON THIS SHEET ARE BASED ON RECORD DRAWINGS AND RMOW GIS DATA. CONTRACTOR TO VERIFIY INVERT ELEVATIONS AND LOCATIONS OF ALL EXISTING UNDERGROUND UTILITIES PRIOR TO CONSTRUCTION. ALL TIE-IN LOCATIONS TO BE EXPOSED PRIOR TO CONSTRUCTION TO CONFIRM ALIGNMENT AND CROSSINGS. ENGINEER TO BE NOTIFIED OF ANY DISCREPANCIES.

> FOR GENERAL CONSTRUCTION NOTES AND DETAILS REFER TO DWG'S 19-0393-D1 AND 19-0393-D2

NOT FOR CONSTRUCTION

	 						_				
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m							-				
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m	 										
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m	 										
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m											
DRAWN BY GC DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10m								-			
DESIGNED BY PH CHECKED BY PH SCALES 0 0 H1:250 10mm RF. Binnie & Associates Ltd. EGBC Permit to Practice Number 1001128					CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC	SS/05				22-03-20	
CHECKED BY PH # 47678 I 9-0393-VVI-2 SCALES R.F. Binnie & Associates Ltd. SHEET 10 OF 14 0 H 1:250 10m					Contraction of the second	OF VINCE PER					
SCALES NGINE Grant 0 H 1:250 10m Scales Number 1001128 Sheet State Scales R.F. Binnie & Associates Ltd. EGRO Permit to Practice Number 1001128 Sheet Sheet					; P. S. HAW	TRYLYSHYN		1	9-039	93-W [.]	1-2
0 H 1:250 10m Number 1001128 SHEET 10 OF 14 1		CHEC	VED RI	гн	2023 LANC	101-221		•			
	F		SCALES		R.F. Binnie &	Associates Ltd.		SHE	ET 10	OF 14	
0 V 1:25 1m DESTROY ALL PRINTS BEARING PREVIOUS No.		0	H 1:250	10m	EGBC Permit Number 1001	to Practice 128					1
		0	V 1:25	1m				DESTR	OY ALL PRINTS BE	ARING PREVIOUS I	No

01 GENERAL REQUIREMENTS

01.1 DOCUMENTS

01.1.1 REFERENCE SPECIFICATIONS

- 1. ALL WORKS SHALL BE IN ACCORDANCE WITH THE FOLLOWING:
- 1.1. RESORT MUNICIPALITY SUBDIVISION AND DEVELOPMENT CONTROL BYLAW.
- 1.2. WORKSAFE B.C 1.3. LATEST EDITION OF THE MASTER MUNICIPAL CONTRACT DOCUMENTS (MMCD 2009 PLATINUM EDITION)
- 1.4. LATEST EDITION OF THE MANUAL OF UNIFORM TRAFFIC CONTROL DEVICES FOR CANADA (MUTCDC) 1.5. ISSUED FOR CONSTRUCTION PLANS APPROVED BY THE RESORT MUNICIPALITY
- 2. ON-SITE BUILDING SEWERS AND WATER SERVICE PIPES SHALL BE IN ACCORDANCE WITH THE LATEST EDITION OF THE B.C. PLUMBING CODE (2018 EDITION).

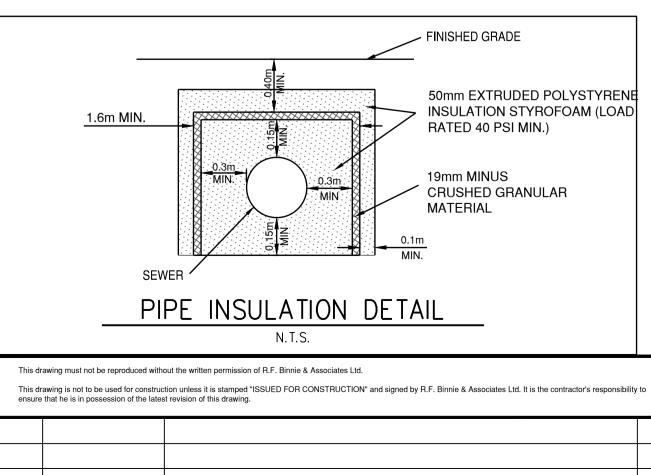
01.1.2 PROJECT RECORD DOCUMENTS

- MAINTAIN ON SITE COPIES OF THE ABOVE DOCUMENTS AND ENSURE THAT ALL SUB CONTRACTORS ARE THOROUGHLY FAMILIAR WITH THE APPLICABLE SECTIONS OF THE DOCUMENTS.
- 2. MAINTAIN A COMPLETE SET OF CIVIL DRAWINGS MARKED UP IN RED TO RECORD THE CONSTRUCTION OF ALL SITE SERVICES ON THIS PROJECT. THE REDLINES SET IS TO BE AVAILABLE FOR THE CIVIL ENGINEER TO REVIEW AT ALL TIMES. AT THE COMPLETION OF THE CIVIL WORKS, THE CONTRACTOR SHALL PROVIDE TO THE ENGINEER ONE (1) SET OF PROJECT RECORD DOCUMENTS AS PER MMCD: 2.1 MEASURED HORIZONTAL AND VERTICAL LOCATIONS OF UNDERGROUND UTILITIES AND
- APPURTENANCES, REFERENCED TO PERMANENT SURFACE IMPROVEMENTS.
- 2.2 FIELD CHANGES OF DIMENSION AND DETAIL. 2.3 CHANGES MADE BY ADDENDA AND CHANGE ORDERS.
- 2.4 DETAILS NOT ON ORIGINAL CONTRACT DRAWINGS.
- 2.5 REFERENCES TO RELATED SHOP DRAWINGS AND MODIFICATIONS. 2.6 PRODUCT SPECIFICATIONS INCLUDING MANUFACTURER, TRADE NAME, AND CATALOGUE NUMBER. 2.7 CERTIFICATIONS, INSPECTION CERTIFICATIONS AND FIELD TEST RECORDS REQUIRED BY INDIVIDUAL SPECIFICATIONS SECTIONS.
- 01.2 CONTRACTOR
- 01.2.1 CONTROL OF THE WORK
- . THE CONTRACTOR SHALL HAVE COMPLETE CONTROL OF THE WORK AND SHALL EFFECTIVELY DIRECT AND SUPERVISE THE WORK SO AS TO ENSURE CONFORMANCE WITH THE CONTRACT DOCUMENTS, SUBJECT TO THE OWNER'S RIGHTS AS SPECIFICALLY SET OUT IN THE CONTRACT DOCUMENTS TO GIVE DIRECTIONS REGARDING WORK, THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR CONSTRUCTION MEANS, METHODS, TECHNIQUES, SEQUENCES AND PROCEDURES AND FOR COORDINATING THE VARIOUS PARTS OF THE WORK LINDER THE CONTRACT
- MAINTAIN THE WORK IN A TIDY CONDITION AND FREE FROM THE ACCUMULATION OF WASTE, DEBRIS, AND WASTE PRODUCTS, OTHER THAN THAT CAUSED BY THE OWNER, OTHER CONTRACTORS, OR ITS EMPLOYEES
- 3. THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR PROVIDING THE NECESSARY FIELD SURVEYS TO PERMIT THE LAYOUT, CONSTRUCTION AND MEASUREMENT OF QUANTITIES OF THE WORK FOR PAYMENT. NO ADDITIONAL PAYMENT WILL BE MADE FOR THIS FIELD SURVEY.

01.2.2 SAFETY

THE CONTRACTOR SHALL BE SOLELY RESPONSIBLE FOR CONSTRUCTION SAFETY AT THE PLACE OF WORK AS AND TO THE EXTENT REQUIRED BY APPLICABLE CONSTRUCTION SAFETY LEGISLATION, REGULATIONS AND CODES, INCLUDING THE WORKERS COMPENSATION ACT AND APPLICABLE REGULATIONS, AND BY GOOD CONSTRUCTION PRACTICE.

01.2.3 PROTECTION OF WORK, PROPERTY AND THE PUBLIC


- THE LOCATIONS OF THE EXISTING UTILITIES, AS SHOWN ON THE DESIGN DRAWINGS, ARE APPROXIMATE ONLY AND THIS INFORMATION MAY NOT BE FULLY ACCURATE OR COMPLETE. PRIOR TO THE START OF CONSTRUCTION, THE CONTRACTOR SHALL LOCATE AND EXPOSE ALL EXISTING UTILITIES AT ALL TIE-IN POINTS. AT ALL POINTS WHERE A CONFLICT MAY ARISE DURING THE CONSTRUCTION OF THE PROPOSED WORKS, AND TO CONFIRM DESIGN ELEVATIONS. IN THE EVENT OF A CONFLICT, THE CONTRACTOR SHALL IMMEDIATELY CONTACT THE ENGINEER FOR DIRECTIONS. THE CONTRACTOR SHALL ASSUME ALL COSTS AND EXPENSES THAT MAY OCCUR FOR DAMAGES, SUPPORT OF AND REPAIR TO SUCH PLANT BY REASON OF THE NEGLIGENCE OF HIS OPERATIONS. (EXISTING UTILITIES SHOWN ARE DERIVED FROM AS-BUILT INFORMATION AND ALL UTILITIES MAY NOT BE NECESSARILY SHOWN.)
- THE CONTRACTOR SHALL BE RESPONSIBLE FOR THE REPAIR OF ANY DAMAGE CAUSED TO EXISTING STREET OR SERVICES BY CONSTRUCTION EQUIPMENT AND/OR TRUCKS HAULING MATERIAL TO THE SITE. THIS MAY INCLUDE DAILY CLEANING OR SWEEPING EXISTING ROADS OF DIRT AND DEBRIS CAUSED BY CONSTRUCTION ACTIVITIES.
- EXISTING UNDERGROUND UTILITY TRENCHES ADJACENT TO THE PROPOSED UNDERGROUND UTILITY INSTALLATION SHALL BE ADEQUATELY PROTECTED FROM SLOUGHING IN ORDER TO PREVENT OVER-WIDTH EXCAVATION
- USE EXTREME CAUTION WHEN WORKING NEAR EXISTING SERVICES AND ANY SERVICES DISTURBED ARE TO BE REPLACED TO THE SATISFACTION OF THE MUNICIPALITY OR OTHER APPROVING AGENCIES. PROTECT ALL SURVEY MONUMENTS, BENCHMARKS, AND LEGAL PINS. ANY DAMAGE CAUSED BY THE
- CONTRACTOR SHALL BE REPAIRED AT THE CONTRACTOR'S EXPENSE. 5. EXISTING AREAS THAT ARE DISTURBED ARE TO BE RESTORED TO THE SATISFACTION OF THE MUNICIPALITY. IN SPECIAL CASES, THE MUNICIPLAITY MAY REQUIRE WRITTEN ACCEPTANCE BY THE AFFECTED PROPERTY OWNERS FOR RESTORATION WORKS PERFORMED BY THE CONTRACTOR.

01.2.4 PERMITS

- I. THE CONTRACTOR SHALL ENSURE THAT ALL APPROVALS AND/OR PERMITS REQUIRED FOR THE PROPOSED WORKS HAVE BEEN OBTAINED FROM ALL AUTHORITIES AND AGENCIES PRIOR TO THE COMMENCEMENT OF CONSTRUCTION.
- ALL CONSTRUCTION IN AND ABOUT A WATERCOURSE MUST RECEIVE PRIOR APPROVAL FROM THE PROVINCIAL MINISTRY OF ENVIRONMENT AND/OR THE FEDERAL DEPARTMENT OF FISHERIES AND OCEANS CANADA WHERE APPLICABLE
- PRIOR TO THE START OF CONSTRUCTION, OBTAIN WRITTEN PERMISSION FROM ADJACENT PROPERTY OWNERS FOR A TEMPORARY ENCROACHMENT ON PRIVATE PROPERTY AND A REGISTERED DOCUMENT FOR A PERMANENT ENCROACHMENT.

01.2.5 CONSTRUCTION SCHEDULE

- I. NOTIFY THE ENGINEER AT THE FOLLOWING STAGES OF THE CONSTRUCTION SCHEDULE:
- 1.1. 48 HOURS PRIOR TO CONSTRUCTION
- 1.2. DELIVERY OF STORM SEWER MATERIAL TO SITE. 1.3. DELIVERY OF SANITARY SEWER MATERIALS TO SITE
- 1.4. DELIVERY OF WATER WORKS MATERIALS TO SITE.
- 1.5. INITIAL INSTALLATION OF STORM SEWER, SANITARY SEWER, AND WATER WORKS CONSTRUCTION PRIOR TO BACKFILLING.
- 1.6. GRADING OF ROAD SURFACES PRIOR TO PAVING.
- 1.7. COMMISSIONING OF A PUMP SYSTEM.
- 2. NOTIFY THE MUNICIPAL ENGINEERING DEPARTMENT A MINIMUM OF 48 HOURS PRIOR TO THE COMMENCEMENT OF ANY CONSTRUCTION WITHIN THE ROAD ALLOWANCES AND RIGHTS-OF-WAYS. TIE-INS SHALL BE WITNESSED BY THE MUNICIPAL INSPECTOR.
- 3. WORKSAFE B.C. IS TO BE NOTIFIED PRIOR TO THE START OF CONSTRUCTION.

REVISED PER UPDATED ARCH SITE PLAN

REVISION

01.2.6 TESTS AND INSPECTIONS

- 1. MATERIAL TESTING SHALL BE CARRIED OUT IN ACCORDANCE WITH THE MMCD. TESTING SHALL BE CARRIED OUT BY QUALIFIED MATERIAL TESTING FIRM AND PAID FOR BY THE CONTRACTOR. PROVIDE COPIES OF ALL TEST RESULTS TO THE ENGINEER.
- 2. OFF-SITE WORK SHALL PASS INSPECTION BY THE RESORT MUNICIPALITY INSPECTOR AND THE SIGNING ENGINEER.

Work	Testing and Inspection Requirement
TRENCH	COMPACTION TEST EVERY 25 LINEAL METRE AND 0.5 M LIFT
BACKFILLING AND COMPACTION	SIEVE TEST EVERY MATERIAL SOURCE AND 1,000 M3
	COMPACTION TEST EVERY 200 M2
GRANULAR BASE	SIEVE TEST EVERY MATERIAL SOURCE AND 1,000 M3
GRANULAR	COMPACTION TEST EVERY 500 M2 AND 0.15 M LIFT
SUBBASE	SIEVE TEST EVERY 1,000 M3
EMBANKMENT	COMPACTION TEST EVERY 1000 M2 AND 0.3 M LIFT
(SUBGRADE)	SIEVE TEST EVERY MATERIAL SOURCE AND 2,000 M3
CONCRETE	AIR, SLUMP AND 1 SET CYLINDER EVERY 50 M3
CONCRETE	MINIMUM 1 SET AND TEST PER DAY OF CONCRETE POUR
	MARSHALL AND SIEVE TEST EVERY 500 TONNES
ASPHALT	COMPACTION TEST EVERY 200 M2
LIFT STATION	AS PER COMMISSIONING PLAN
TRACER WIRE	AS PER MANUFACTURER
	CCTV INSPECTION REPORT AND VIDEO OF ALL SEWERS LINES IN PDF AND MPEG VIDEO FILE FORMAT
	FLUSH ALL SEWER PIPING PRIOR TO CCTV INSPECTION
SEWER SYSTEMS	FLUSH AND PRESSURE TEST FORCEMAINS. CONFIRM THE SANITARY FORCEMAIN WORKING PRESSURE WITH THE ENGINEER PRIOR TO PRESSURE TESTING.
	ALL TESTING TO BE WITNESSED BY THE ENGINEER AND THE RMOW INSPECTOR.
WATED SYSTEMS	PRESSURE TESTING, CHLORINATION, FLUSHING, AND BACTERIOLOGICAL TESTING SHALL BE PERFORMED TO THE MINISTRY OF HEALTH AND AWWA STANDARDS AND TO BE PAID BY THE CONTRACTOR. SUBMIT WRITTEN PROCEDURES TO THE ENGINEER AND THE RMOW ENGINEERING DEPARTMENT FOR REVIEW AND APPROVAL. ALL TESTING TO BE WITNESSED BY THE ENGINEER AND THE RMOW INSPECTOR. THE FOLLOWING NOTIFICATIONS ARE REQUIRED:
WATER SYSTEMS	TIE-IN PLAN SUBMITTED IN ADVANCE OF WORK (ALLOW 2 WEEKS FOR REVIEW)
	ONE WEEK NOTICE OF CONSTRUCTION SCHEDULE
	48 HOUR NOTICE TO CONFIRM DATE/TIMING OF TESTING
	CONFIRM THE WATERMAIN WORKING PRESSURE WITH THE ENGINEER PRIOR TO PRESSURE TESTING.

- 01.2.7 CHANGES
- 1. OBTAIN WRITTEN PERMISSION FROM THE ENGINEER FOR ANY MATERIAL SUBSTITUTION OR DESIGN CHANGE. THE MUNICIPLAITY SHALL BE NOTIFIED OF ANY SUBSTITUTION OR CHANGE IN DESIGN. ANY CHANGE IN DESIGN WILL REQUIRE A DRAWING REVISION.
- 01.2.8 ENVIRONMENTAL PROTECTION
- 1. TREES DESIGNATED TO BE SAVED ARE TO BE PROTECTED BY SNOW FENCING.
- 01.2.9 COORDINATION AND CONNECTION

ELECTRICAL DUCT WORK AND FACILITIES.

- 1. CONFIRM WITH THE MECHANICAL CONSULTANT THE LOCATIONS, ELEVATIONS, AND SIZE OF THE SERVICE CONNECTIONS TO THE PROPOSED BUILDINGS PRIOR TO THE START OF CONSTRUCTION. 2. REVIEW THE ELECTRICAL DESIGN DRAWINGS FOR COORDINATION WITH CIVIL WORKS AND INSTALLATION OF
- 01.3 SHOP DRAWINGS
- 1. SUBMIT SHOP DRAWINGS FOR REVIEW AS PER MMCD REQUIREMENTS. ALL SHOP DRAWINGS SHALL BE REVIEWED BY THE ENGINEER PRIOR TO FABRICATION.
- 01.4 TEMPORARY CONTROLS
- 01.4.1 EROSION AND SEDIMENT CONTROL
- 1. CONDUCT ALL SILTATION CONTROL WORK TO THE REQUIREMENTS OF THE PROVINCIAL MINISTRY OF ENVIRONMENT AND THE FEDERAL DEPARTMENT OF FISHERIES AND OCEANS CANADA AND OTHER AGENCIES
- 2. STOCKPILE ON-SITE AT VARIOUS STRATEGIC LOCATIONS, ADEQUATE SUPPLIES OF ALL MATERIALS REQUIRED TO PROTECT DOWNSTREAM WATERCOURSES FROM SILTATION.
- REPAIR MACHINE TRACKS OR OTHER SURFACE DEFORMATIONS WHICH TEND TO ALTER DRAINAGE PATHS OR CONCENTRATE DRAINAGE IN SUCH A WAY AS TO INCREASE EROSION.
- 4. ASSESS AND REVIEW THE EFFECTIVENESS OF TEMPORARY SEDIMENT CONTROL MEASURES AND
- DETERMINE THE NEED FOR ADDITIONAL MEASURES ON A CONTINUING BASIS. 5. INSPECT AND MAINTAIN SILTATION CONTROL ON A DAILY BASIS.
- 6. CORRECT DEFICIENCIES IN EROSION AND SEDIMENTATION CONTROL IMMEDIATELY. IF THE CONTRACTOR FAILS TO CORRECT THE DEFICIENCIES IN EROSION AND SEDIMENT CONTROL, THIS DEFAULT MAY BE CORRECTED BY THE OWNER AT THE CONTRACTOR'S EXPENSE.
- 7. CONTROL ALL RUNOFF FROM SOIL STOCKPILES AND EXPOSED EARTH SLOPES.
- 8. ALL WORK SHALL BE UNDERTAKEN AND COMPLETED IN SUCH A MANNER AS TO PREVENT THE RELEASE OF SEDIMENT LADEN WATER INTO ANY DOWNSTREAM WATERCOURSE OR STORM SEWER. 9. ANY IRREGULARITIES SHALL BE REPORTED TO THE ENGINEER IMMEDIATELY.

01.4.2 TRAFFIC CONTROL

PROVIDE TRAFFIC CONTROL, SIGNAGE, DELINEATORS, BARRICADES, AND WARNING DEVICES AS REQUIRED TO MAINTAIN VEHICLE AND PEDESTRIAN FLOW AND FOR EMERGENCY VEHICLE ACCESS. SUBMIT A TRAFFIC MANAGEMENT PLAN IN ADVANCE OF CONSTRUCTION FOR THE RMOW'S REVIEW AND APPROVAL.

03 CONCRETE

03.1 CONCRETE WALKS, DRIVEWAYS, CURBS AND GUTTERS

03.1.1	PRODUCT

PRODUCT	PROJECT SPECIFICATIONS	STANDARD DRAWINGS
	150 mm CONCRETE (RESIDENTIAL)	
DRIVEWAY		C7 - DRIVEWAY CROSSING FC
CROSSINGS	200 mm CONCRETE (COMMERCIAL AND INDUSTRIAL)	BARRIER CURBS (MMCD)

03.1.2 EXECUTION

GC

BY

1. LOCATIONS OF DRIVEWAYS, WHEELCHAIR RAMPS, ETC. SHALL BE CONFIRMED IN THE FIELD PRIOR TO

The people behind your infrastructure.

2023-01-05

DATE

	ADDITIONAL INFORMATION
R	
-	

32 ROADS AND SITE IMPROVEMENTS

32.1 ROADWORKS

32.1.1 PRODUCTS			
PRODUCT PROJECT SPECIFICATIONS		STANDARD DRAWINGS	ADDITIONAL INFORMATION
	65 mm THICK – ASPHALT SURFACE LAYER (UPPER COURSE 2)		
LIGHT DUTY PAVEMENT STRUCTURE (PARKING)	150 mm THICK – 19 mm MINUS CRUSHED GRANULAR BASE COURSE		ON APPROVED FILL AND SUBGRADE
	300 mm THICK – 75 mm MINUS CRUSHED GRANULAR SUBBASE COURSE		
	40 mm THICK – ASPHALT SURFACE LAYER (UPPER COURSE 2)		
HEAVY DUTY PAVEMENT STRUCTURE (ACCESS ROADS)	45 mm THICK – ASPHALT BASE LAYER (LOWER COURSE 2)		ON APPROVED FILL
	150 mm THICK – 19 mm MINUS CRUSHED GRANULAR BASE COURSE		AND SUBGRADE
	300 mm THICK – 75 mm MINUS CRUSHED GRANULAR SUBBASE COURSE		

32.1.2 EXECUTION

- 1. FOR RECOMMENDATIONS REGARDING THE SUBSURFACE CONDITIONS, SITE PREPARATION, AND THE PROPOSED ROAD STRUCTURE, REFER TO THE GEOTECHNICAL REPORT PRIOR TO THE START OF CONSTRUCTION
- 2. SUBGRADE, GRANULAR SUBBASE, AND GRANULAR BASE MATERIALS SHALL BE COMPACTED TO AT LEAST 95.0% OF THEIR MODIFIED PROCTOR DRY DENSITY UNLESS NOTED OTHERWISE.
- 3. ALL LOOSE AND ORGANIC MATERIAL SHALL BE EXCAVATED AND REMOVED FROM THE ROADWAY. 4. THE ROAD BASE SHALL EXTEND A MINIMUM OF 0.3 m BEYOND THE SIDEWALK AND/OR CURB AND GUTTER, WHICHEVER IS GREATER AND FILLED TO THE LEVEL OF THE SIDEWALK OR CURB FOR SUPPORT.
- 5. ALL VALVES BOXES, MANHOLES, JUNCTION BOXES, ETC. WITHIN THE ROAD RIGHT OF WAY SHALL BE ADJUSTED TO FINISHED GRADE UNLESS OTHERWISE NOTED.
- 6. CHANGES IN GRADE SHALL BE FORMED WITH SMOOTH CURVES. 7. CATCHBASIN RIM ELEVATIONS SHALL BE SET 25 mm BELOW THE FINISHED GUTTER LINE GRADES. THE GUTTER AND ROAD SURFACE AREA TO BE SHAPED TO FORM A DISH AROUND THE INLET. 8. TIE-INS TO EXISTING PAVEMENT AND PAVEMENT RESTORATIONS SHALL BE MADE BY CUTTING BACK THE EXISTING PAVEMENT TO SOUND MATERIAL AS NECESSARY TO PRODUCE A NEAT VERTICAL FACE WITH STRAIGHT EDGE PRIOR TO PLACING HOT MIX ASPHALTIC CONCRETE. EXPOSED PAVEMENT SURFACES
- SHALL BE PAINTED WITH LIQUID ASPHALT AND HEATED TO 65 DEGREES CELSIUS. THE FINISHED PAVEMENT SUBFACE SHALL BLEND IN SMOOTHLY WITH THE EXISTING PAVEMENT. THE EDGE OF PAVEMENT SHALL BE SAWCUT AND KEYED TO FORM A MINIMUM 200 mm WIDE BY 40 mm DEEP LAP JOINT WITH THE PROPOSED PAVEMENT UNLESS NOTED OTHERWISE OR AS DIRECTED BY THE ENGINEER. 9. PAVEMENT MARKINGS, LINE PAINTING, DIRECTIONAL LINES/ARROWS ETC, SHALL BE PLACED IN ACCORDANCE WITH THE ARCHITECTURAL SITE PLAN.

33 UTILITIES

33.1 SEWER SYSTEMS

PRODUCT	PROJECT SPECIFICATIONS	STANDARD DRAWINGS	ADDITIONAL INFORMATION
ASTM C-14, CLASS III (NON-REINFORCED) OR ASTM C-76, CLASS III (REINFORCED CONCRETE)		<u>G4 – UTILITY TRENCH</u> (MMCD)	PIPE MATERIAL FOR SEWEF TO BE INSTALLED AS SHOWN ON THE DESIGN DRAWINGS. THE MINIMUM PIPE SIZE FOR
	SDR35 (PVC)		THE STORM SEWER SHALL BE 300mm DIAMETER.
	1050 mm DIA. UNLESS OTHERWISE NOTED	S1 - STANDARD AND	COVER MARKED "STORM SEWER" OR "SANITARY SEWER"
MANHOLE	TR18 FRAME AND COVER (STANDARD MANHOLE)	SUMP MANHOLES (MMCD)	
	DOBNEY C-39 GRATE (CATCH BASIN MANHOLE)		600 mm SUMP IN CATCHBASIN MANHOLES
CATCH BASIN (CURB AND	750 mm INSIDE DIA. PRECAST CONCRETE DOBNEY B-23 GRATE DOBNEY	-	INSTALL LEFT AND RIGHT GRATES ACCORDING TO
GUTTER - TOP INLET)	(LEFT AND RIGHT) B-24 TYPE 'D' FRAME	-	FLOW DIRECTION
	900 mm INSIDE DIA. PRECAST CONCRETE		
CATCH BASIN (CURB AND GUTTER - SIDE	DOBNEY B-23 GRATE DOBNEY (LEFT AND RIGHT) FOR CURB AND GUTTER		INSTALL LEFT AND RIGHT GRATES ACCORDING TO FLOW DIRECTION
INLET)	DOBNEY B-24 ADJUSTABLE FRAME AND HOOD (SIDE INLET) FOR CURB AND GUTTER		
CATCH BASIN (ASPHALT SURROUND –	600 mm INSIDE DIA. PRECAST CONCRETE	S11 – TOP INLET CATCHBASIN	
ROUND INLET)	DOBNEY B-26B FRAME AND GRATE	(MMCD)	
	300 mm INSIDE DIA. PRECAST CONCRETE (TYPE 1) 600 mm INSIDE DIA. PRECAST		
LAWN DRAINS	CONCRETE (TYPE 2) DOBNEY D2A GRATE (TYPE 1)	S12 - LAWN DRAINS (MMCD)	
	DOBNEY B-22A GRATE (TYPE 2)		
	PVC (SDR28) 200 mm DIA. (CATCH BASIN -	-	
CATCH BASIN AND LAWN DRAIN	SINGLE) 250 mm DIA. (CATCH BASIN - DOUBLE)		
LEADS	100 mm DIA. (LAWN DRAIN – TYPE 1)		
	150 mm DIA. (LAWN DRAIN – TYPE 2)		
	PVC (SDR28)	ST - SANITARY SEWER SERVICE CONNECTION (MMCD)	
SERVICE	150 mm DIA. MIN. (STORM)		
CONNECTIONS	100 mm DIA. MIN. (SANITARY)	S8 - STORM SEWER SERVICE CONNECTION (MMCD)	
	STANDARD MANUFACTURED WYE FITTINGS		
INSPECTION CHAMBERS (100 mm TO 200 mm SERVICE)	LE-RON 70A 4x8 WLP-1 INSPECTION CHAMBER C/W 200mm DIA. PVC SDR35 RISER PIPE GREEN LID (STORM)	S9 - INSPECTION CHAMBER FOR 100 TO 200 SANITARY SEWER CONNECTION	ADD 300 mm X 500 mm CONCRETE PULL BOX C/W CAST IRON LID MARKED "SANITARY" OR "STORM" FOR INSTALLATION IN
	RED LID (STORM)	(MMCD)	DRIVEWAY AND ROAD
INSPECTION CHAMBERS (250 mm TO 375 mm SERVICE)	600 mm PRECAST CONCRETE RISER (H20 RATED) C/W D26-B FRAME AND SOLID COVER	S10 - INSPECTION CHAMBER FOR 250 TO 375 STORM SEWER CONNECTION (MMCD)	COVER MARKED "STORM" OR "SANITARY"
	SAME DIAMETER AS CONNECTING PIPE UP TO MAX. 150 mm DIA.	<u>S</u> 6-sewer	USE MANHOLE ON SEWER
(ON-SITE)	SPACING AND LOCATION AS PER B.C. PLUMBING CODE	CLEANOUT (MMCD)	200 mm DIA. OR LARGER.

33.1.2 EXECUTION

- ELEVATIONS.
- MINIMUM COVER OVER MAINS AND SERVICE CONNECTIONS SHALL BE 1.0 m UNLESS NOTED OTHERWISE.
- OF THE TRENCH WITH CONCRETE POURED IN PLACE. PIPE ANCHORS ARE TO BE INSTALLED AS PER MMCD STANDARD DRAWING NO. G8.
- UNLESS NOTED OTHERWISE
- STORM SERVICES SHALL BE ABOVE THE HYDRAULIC GRADE LINE OF THE MINOR FLOW AT THE PROPERTY SERVICES SHALL ALLOW FOR 600 mm COVER UNDER THE MINIMUM BUILDING ELEVATION (MBE) PLUS 2%
- GRADE FROM THE REAR OF THE HOUSE TO THE SEWER MAIN UNLESS DIRECTED OTHERWISE BY THE **FNGINFFR**
- IMMEDIATELY OUTSIDE THE PROPOSED BUILDINGS.

33.2 WATER SYSTEMS

33.2.1 PRODUC	CTS		
PRODUCT	PROJECT SPECIFICATIONS	STANDARD DRAWINGS	ADDITIONAL INFORMATION
	AWWA C151, CLASS 50 OR PRESSURE CLASS 350 UNLESS OTHERWISE NOTED	G4 -UTILITY TRENCH	ALL FITTINGS AND JOINTS TO BE MECHANICALLY
(DUCTILE IRON)	CEMENT-MORTAR LINING (AWWA C104)	(MMCD)	RESTRAINED
	AWWA C900, DR18 (PRESSURE CLASS 235)	G4 -UTILITY TRENCH	ALL FITTINGS AND JOINTS TO BE MECHANICALLY
(PVC)	MAX. 300 mm	(MMCD)	RESTRAINED C/W TRACER WIRE
WATERMAIN ANCHORS	AS PER STANDARD DRAWING	G8 - PIPE ANCHOR BLOCKS (RMOW)	REQUIRED WHERE SLOPE IS 10% OR GREATER
GATE VALVES	RESILIENT-SEATED (AWWA C509)		
FIRE HYDRANTS	CANADA VALVE	W4 - FIRE HYDRANT INSTALLATION (MMCD)	C/W 100 mm PUMPER OUTLET WITH B.C. STANDARD THREAD, COUNTERCLOCKWISE OPENING WITH A STORZ CONNECTION. PAINT HYDRANT RED AND STORZ CONNECTION BLACK.
WATER SERVICES (SINGLE FAMILY)	38 mm POLYETHYLENE (AWWA C901) TO PRESSURE CLASS 160 (CSA B137.1) UNLESS OTHERWISE NOTED	W2a - WATER SERVICE CONNECTION (MMCD)	
WATER METER	MUELLER THERMAL-COIL 450 mm DIA.		
BOX (38 mm SERVICE)	MUELLER FLAT LOCKING LID C/W PENTAGON NUT LOCK		
	BROOKS NO.66 (425 mm X 750 mm) CONCRETE METER BOX		
WATER METER BOX (50 mm SERVICE)	CAST IRON READING LID NON-VEHICULAR AREAS; OR,]	
	STEEL TRAFFIC COVER (VEHICULAR AREAS)		

33.2.2 EXECUTION

- 1. DEFLECT PIPE JOINTS TO A MAXIMUM ½ OF THE ALLOWABLE MANUFACTURER S RECOMMENDATIONS. THE MINIMUM COVER OF THE PROPOSED WATERMAIN SHALL BE 1.8 m WITH 0.3 m COVER OVER VALVE
- POURED IN PLACE.
- ELEVATIONS TO BE INSTALLED 0.15 m ABOVE PROPOSED FINISHED GRADE AT HYDRANT. 5. ASSURANCE OF PROTECTION OF THE WATERMAIN:
- 5.1. PARALLEL LINES: WATERMAIN SHOULD BE LAID AT LEAST 3 m (10 ft) HORIZONTALLY FROM ANY SANITARY WATERMAIN, WITH PRESSURE CLASS JOINTS DESIGNED TO REMAIN WATERTIGHT IF THE
- STRENGTH MAY BE NEEDED. 5.2.
- WITH ANSI/AWWA STANDARDS C209 AND C217-90. 5.3. BE APPLIED TO SERVICE CONNECTIONS.

33.3 TRACER WIRES

33.3.1 PRODUCTS

PRODUCT	PROJECT SPECIFICATIONS	STANDARD DRAWINGS	ADDITIONAL INFORMATION
TRACER WIRE	#12 AWG RWU90 SINGLE COPPER CONDUCTOR, XLPE INSULATION AS SUPLIED BY SOUTHWIRE		INSTALL AS PER MANUFACTURER'S RECOMMENDATIONS

33.3.2 EXECUTION

- 1. ALL INSTALLATION REQUIREMENTS OF THE MANUFACTURER SHALL BE APPLICABLE TO THE INSTALLATION THE INSTALLATION OF THIS COMPONENT.
- 2. TRACER WIRES SHALL BE INTERCONNECTED AT MAINLINE TEES AND CROSSES WITH LOCKABLE EXPOSURE.
- 3. COMPLETE TRACER WIRE SPLICES AND REPAIRS USING SPLICE KIT. 4. INSTALL TRACER WIRES AT THE 4 O'CLOCK POSITION AND SECURE TO THE PIPE AT 2.0 m INTERVALS.
- 5. GROUND TRACER WIRES AT ALL DEAD ENDS AND STUBS USING GROUNDING ANODE.

R.F. BINNIE & ASSOCIATES LTD. 201 - 40147 Glenalder Place, Squamish, BC V8B 0G2 TEL 604 892 8222

DRAWING DESCRIPTION

CLIENT

VAIL RESORTS MANAGEMENT COMPANY

STAFF HOUSING GLACIER 8 GENERAL CONSTRUCTION NOTES AND DETAILS

1. FINISHED RIM ELEVATION OF MANHOLES AND CLEANOUTS SHALL MATCH THE FINISHED ROAD GRADES AND MAXIMUM GRADE SHALL BE 15.0% UNLESS PROVISIONS ARE MADE TO ANCHOR THE PIPE TO THE BOTTOM

4. SERVICES SHALL BE INSTALLED FROM THE MAIN TO THE PROPERTY LINE AT A MINIMUM GRADE OF 2.0% SERVICES SHALL ENTER THE MAIN AT A POINT JUST ABOVE THE SPRINGLINE. CONNECTIONS TO NEW MAINS SHALL BE MADE USING WYE FITTINGS. CONNECTIONS TO EXISTING MAINS SHALL BE MADE USING SADDLES.

8. SERVICE CONNECTIONS SHALL TERMINATE 1.0 m MIN. FROM THE BUILDING FACE. CONTINUATION OF THE BUILDING DRAIN BY THE BUILDING PLUMBING CONTRACTOR SHALL INCLUDE ANY STORM SUMPS REQUIRED

STEMS. VALVES LARGER THAN 400 mm DIAMETER MAY BE INSTALLED SIDEWAYS WITH A 90° STEM ADAPTER. 3. THE MINIMUM GRADE OF THE PROPOSED WATERMAIN SHALL BE 0.1%. THE MAXIMUM GRADE SHALL BE 10.0% UNLESS PROVISIONS ARE MADE TO ANCHOR THE PIPE TO THE BOTTOM OF THE TRENCH WITH CONCRETE

4. FIRE HYDRANT PUMPER PORT SHALL BE A MINIMUM OF 0.45 m ABOVE THE GROUND. ALL HYDRANT FLANGE

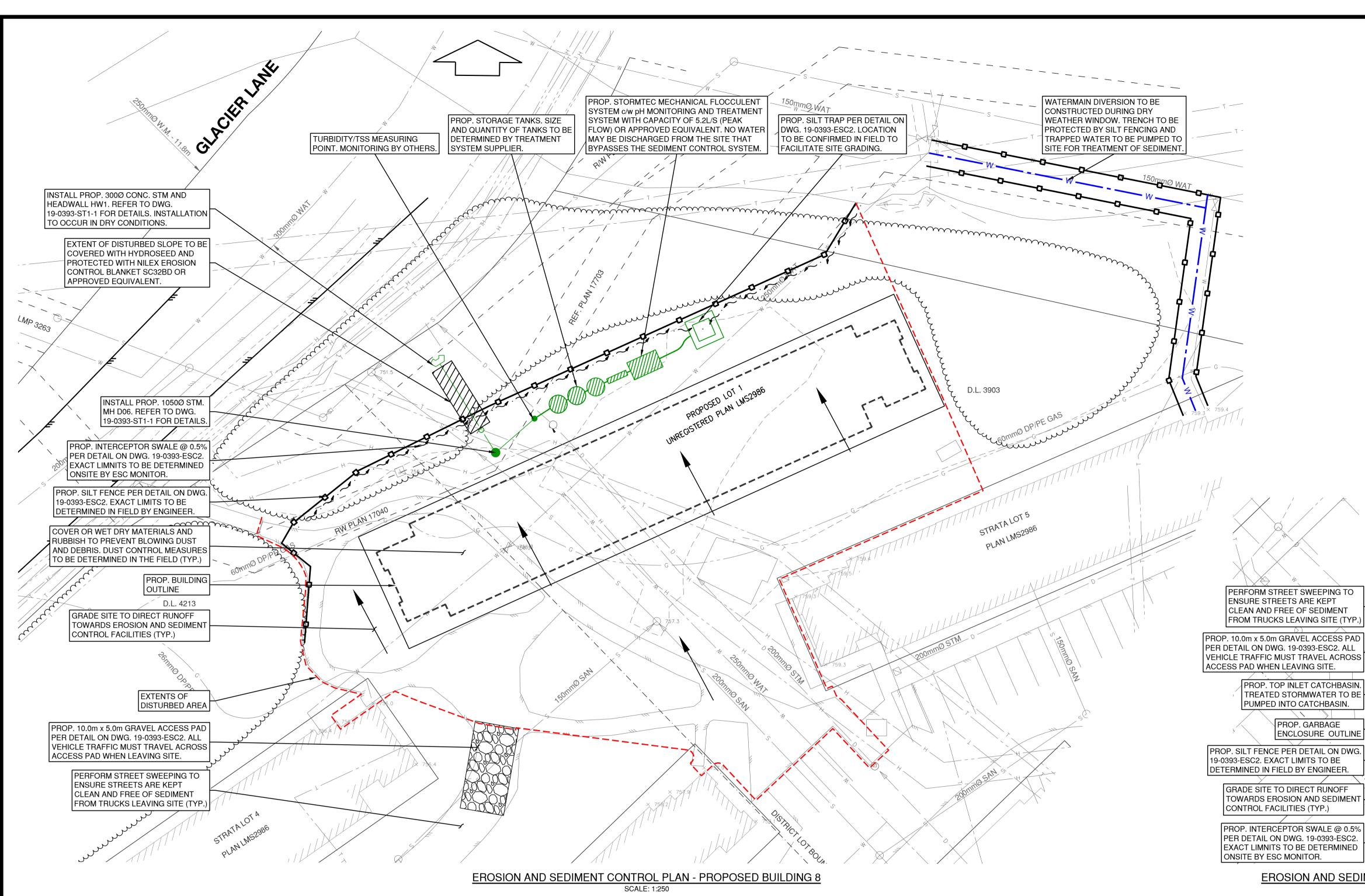
OR STORM SEWER. WHERE THIS HORIZONTAL SEPARATION IS NOT POSSIBLE, THE BOTTOM OF THE WATERMAIN SHOULD BE AT LEAST 45 cm (18 in) ABOVE THE TOP OF THE SEWER AND SUFFICIENTLY TO ONE SIDE OF THE SEWER TO ALLOW REPAIRS WITHOUT DISTURBING THE WATERMAIN. IF THIS VERTICAL SEPARATION IS NOT POSSIBLE, THE SEWER SHOULD BE OF THE SAME SERVICE CAPABILITY AS THE GROUNDWATER TABLE PERIODICALLY RISES ABOVE THE SEWER, AND ARE PRESSURE TESTED BEFORE BACKFILLING. OTHER PRECAUTIONS, SUCH AS A WATERMAIN WITH IMPROVED JOINTS AND HIGHER

CROSSINGS: WHERE A WATERMAIN CROSSES A SANITARY OR STORM SEWER, THE LINES SHOULD BE LAID WITH THE WATERMAIN CROSSING OVER THE SEWER AND WITH THE MIDDLE OF PIPE LENGTHS OCATED AT THE CROSSING POINTS, TO MAXIMIZE THE SEPARATION BETWEEN JOINTS. WHERE A MINIMUM 3 m JOINT SEPARATION AND/OR A MINIMUM 45 cm CLEAR VERTICAL SEPARATION IS NOT POSSIBLE AT THE CROSSING, PRECAUTIONS TO IMPROVE WATER TIGHTNESS OF THE SEWER JOINTS AND STRUCTURAL IMPROVEMENTS SUCH AS HIGHER STRENGTH WATERMAIN AND/OR SEWER AT THE CROSSING AREA MAY BE NEEDED. SLEEVING, PIPE BRIDGING OR OTHER SUITABLE MEASURES MAY B CONSIDERED. ALL JOINTS WITHIN 3 m OF THE CROSSING SHOULD BE EITHER WRAPPED WITH HEAT SHRINK OR PACKED WITH INERT PETROLEUM COMPOUND AND WRAPPED IN TAPE IN ACCORDANCE

SERVICE CONNECTIONS: WHEREVER POSSIBLE, THE ABOVE CONSTRUCTION PRACTICES SHOULD ALSO

OF TRACER WIRE, TRACER BOXES, GROUNDING ANODES AND OTHER APPURTENANCES ASSOCIATED WITH

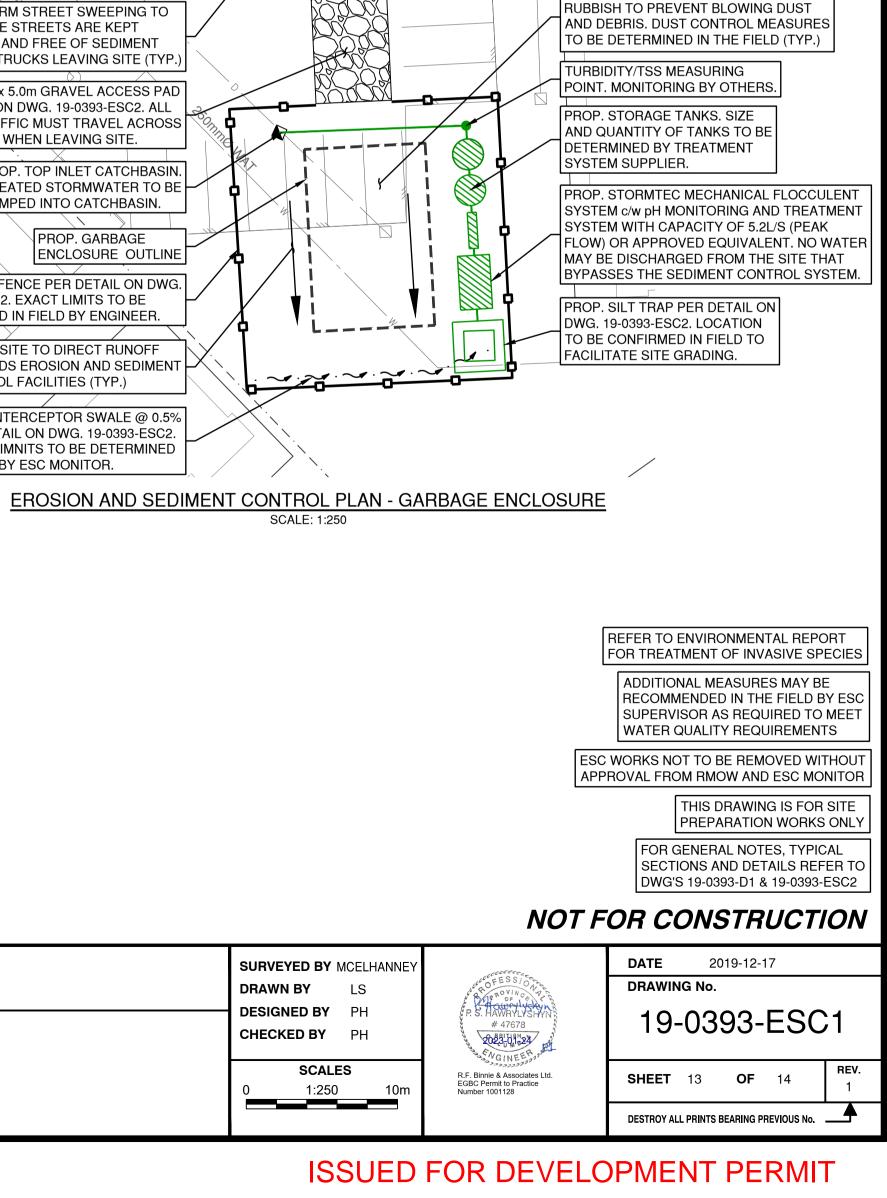
CONNECTORS. CONNECTORS SHALL BE FILLED WITH DIELECTRIC SILICON TO SEAL ALL UNINSULATED WIRE


SURVEYED BY	MCELHANNEY		
DRAWN BY	LS		
DESIGNED BY	PH		
CHECKED BY	PH		
SCALES			
NOT TO S	CALE		

DATE	2	019-12-1	17		
DRAWING No.					
19-0393-D1					
SHEET	11	OF	14	REV.	

DESTROY ALL PRINTS BEARING PREVIOUS No.

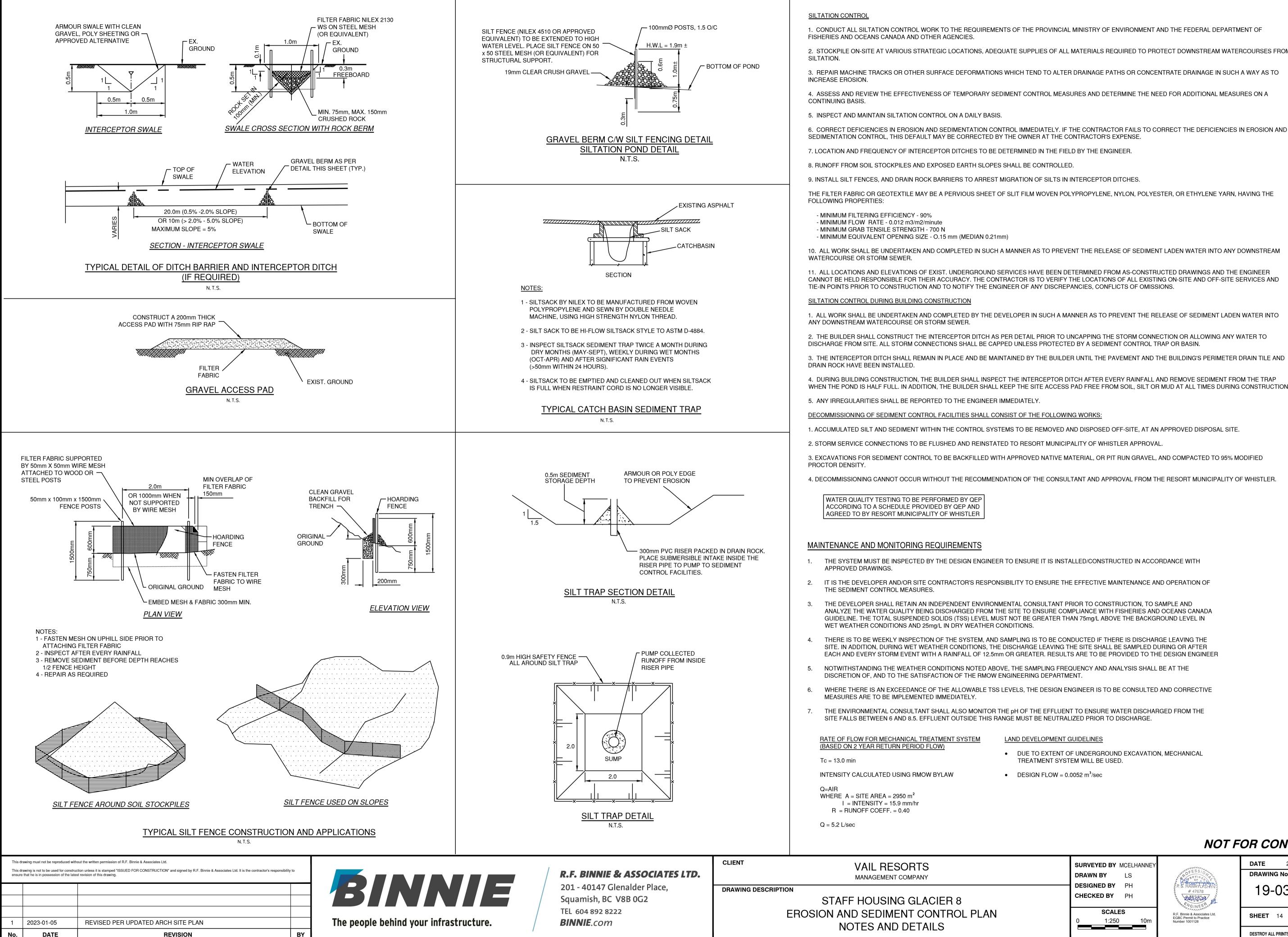
NOT FOR CONSTRUCTION


D: 2023-01-24 3:15:26 PMUSER: GCOJUANGCO :\2019\19-0393\00 - CAD FILES\DWG\FINAL\19-0393-ESC.DWG LAYOUT

This drawing must not be reproduced without the written permission of R.F. Binnie & Associates Ltd. This drawing is not to be used for construction unless it is stamped "ISSUED FOR CONSTRUCTION" and signed by R.F. Binnie & Associates Ltd. It is the contractor's responsibility to ensure that he is in possession of the latest revision of this drawing.				
1	2023-01-05	REVISED PER UPDATED ARCH SITE PLAN	GC	
No.	DATE	REVISION	BY	

The people behind your infrastructure.

	R.F. BINNIE & ASSOCIATES LTD.	CLIENT VAIL RESORTS MANAGEMENT COMPANY	CLIENT
	201 - 40147 Glenalder Place,	DRAWING DESCRIPTION	DRAWING DESCRIPTION
	Squamish, BC V8B 0G2	STAFF HOUSING GLACIER 8	
	TEL 604 892 8222	EROSION AND SEDIMENT	
/	BINNIE.com	CONTROL PLAN	



BENCHMARK:

ELEVATIONS ARE IN METRES AND ARE REFERRED TO GEODETIC DATUM CGVD28 USING SMARTNET WHISTLER STATION

COVER OR WET DRY MATERIALS AND

ELEVATION = 923.642 METRES

1. CONDUCT ALL SILTATION CONTROL WORK TO THE REQUIREMENTS OF THE PROVINCIAL MINISTRY OF ENVIRONMENT AND THE FEDERAL DEPARTMENT OF

2. STOCKPILE ON-SITE AT VARIOUS STRATEGIC LOCATIONS, ADEQUATE SUPPLIES OF ALL MATERIALS REQUIRED TO PROTECT DOWNSTREAM WATERCOURSES FROM

3. REPAIR MACHINE TRACKS OR OTHER SURFACE DEFORMATIONS WHICH TEND TO ALTER DRAINAGE PATHS OR CONCENTRATE DRAINAGE IN SUCH A WAY AS TO

4. ASSESS AND REVIEW THE EFFECTIVENESS OF TEMPORARY SEDIMENT CONTROL MEASURES AND DETERMINE THE NEED FOR ADDITIONAL MEASURES ON A

6. CORRECT DEFICIENCIES IN EROSION AND SEDIMENTATION CONTROL IMMEDIATELY. IF THE CONTRACTOR FAILS TO CORRECT THE DEFICIENCIES IN EROSION AND

THE FILTER FABRIC OR GEOTEXTILE MAY BE A PERVIOUS SHEET OF SLIT FILM WOVEN POLYPROPYLENE, NYLON, POLYESTER, OR ETHYLENE YARN, HAVING THE

10. ALL WORK SHALL BE UNDERTAKEN AND COMPLETED IN SUCH A MANNER AS TO PREVENT THE RELEASE OF SEDIMENT LADEN WATER INTO ANY DOWNSTREAM

11. ALL LOCATIONS AND ELEVATIONS OF EXIST. UNDERGROUND SERVICES HAVE BEEN DETERMINED FROM AS-CONSTRUCTED DRAWINGS AND THE ENGINEER CANNOT BE HELD RESPONSIBLE FOR THEIR ACCURACY. THE CONTRACTOR IS TO VERIFY THE LOCATIONS OF ALL EXISTING ON-SITE AND OFF-SITE SERVICES AND

1. ALL WORK SHALL BE UNDERTAKEN AND COMPLETED BY THE DEVELOPER IN SUCH A MANNER AS TO PREVENT THE RELEASE OF SEDIMENT LADEN WATER INTO

2. THE BUILDER SHALL CONSTRUCT THE INTERCEPTOR DITCH AS PER DETAIL PRIOR TO UNCAPPING THE STORM CONNECTION OR ALLOWING ANY WATER TO

4. DURING BUILDING CONSTRUCTION, THE BUILDER SHALL INSPECT THE INTERCEPTOR DITCH AFTER EVERY RAINFALL AND REMOVE SEDIMENT FROM THE TRAP WHEN THE POND IS HALF FULL. IN ADDITION, THE BUILDER SHALL KEEP THE SITE ACCESS PAD FREE FROM SOIL, SILT OR MUD AT ALL TIMES DURING CONSTRUCTION.

1. ACCUMULATED SILT AND SEDIMENT WITHIN THE CONTROL SYSTEMS TO BE REMOVED AND DISPOSED OFF-SITE, AT AN APPROVED DISPOSAL SITE.

3. EXCAVATIONS FOR SEDIMENT CONTROL TO BE BACKFILLED WITH APPROVED NATIVE MATERIAL, OR PIT RUN GRAVEL, AND COMPACTED TO 95% MODIFIED

4. DECOMMISSIONING CANNOT OCCUR WITHOUT THE RECOMMENDATION OF THE CONSULTANT AND APPROVAL FROM THE RESORT MUNICIPALITY OF WHISTLER.

THE SYSTEM MUST BE INSPECTED BY THE DESIGN ENGINEER TO ENSURE IT IS INSTALLED/CONSTRUCTED IN ACCORDANCE WITH

IT IS THE DEVELOPER AND/OR SITE CONTRACTOR'S RESPONSIBILITY TO ENSURE THE EFFECTIVE MAINTENANCE AND OPERATION OF

ANALYZE THE WATER QUALITY BEING DISCHARGED FROM THE SITE TO ENSURE COMPLIANCE WITH FISHERIES AND OCEANS CANADA GUIDELINE. THE TOTAL SUSPENDED SOLIDS (TSS) LEVEL MUST NOT BE GREATER THAN 75mg/L ABOVE THE BACKGROUND LEVEL IN

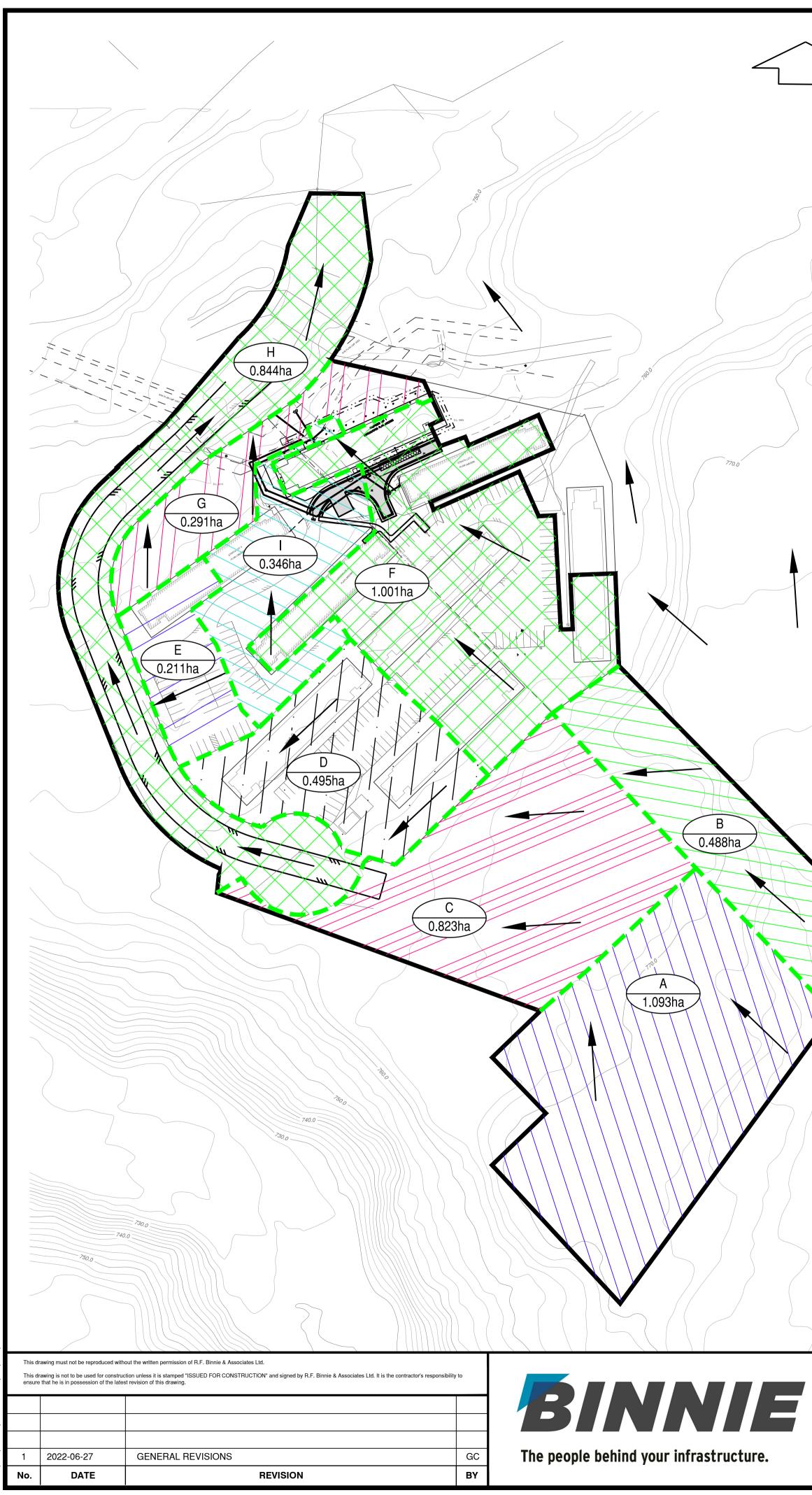
THERE IS TO BE WEEKLY INSPECTION OF THE SYSTEM, AND SAMPLING IS TO BE CONDUCTED IF THERE IS DISCHARGE LEAVING THE SITE. IN ADDITION, DURING WET WEATHER CONDITIONS, THE DISCHARGE LEAVING THE SITE SHALL BE SAMPLED DURING OR AFTER

WHERE THERE IS AN EXCEEDANCE OF THE ALLOWABLE TSS LEVELS, THE DESIGN ENGINEER IS TO BE CONSULTED AND CORRECTIVE

THE ENVIRONMENTAL CONSULTANT SHALL ALSO MONITOR THE pH OF THE EFFLUENT TO ENSURE WATER DISCHARGED FROM THE

LAND DEVELOPMENT GUIDELINES

 DUE TO EXTENT OF UNDERGROUND EXCAVATION, MECHANICAL TREATMENT SYSTEM WILL BE USED.


• DESIGN FLOW = $0.0052 \text{ m}^3/\text{sec}$

NOT	FOR	CONS	TRUC	CTION

SURVEYED BY DRAWN BY	LS
DESIGNED BY CHECKED BY	PH PH
SCAL	ES
0 1:250) <u>10</u> m

DA	ΔTE	20	019-12-1	17	
DF	RAWIN	G No.			
	19-	03	93-	ESC	2
Sŀ	IEET	14	OF	14	REV . 1
DES	STROY ALL	_ PRINTS	BEARING PI	REVIOUS No.	

/	R.F. BINNIE & ASSOCIATES LTD.	CLIENT	VAIL RESORTS MANAGEMENT COMPANY
/	201 - 40147 Glenalder Place,	DRAWING DESCRIPTION	
/	Squamish, BC V8B 0G2		STAFF HOUSING GLACIER 8
/	TEL 604 892 8222		STORMWATER CATCHMENT
	BINNIE.com		POST-DEVELOPMENT PLAN

STORMWATER CONTROL LEGEND				
100 YEAR OVERLAND FLOW				
100 YEAR FLOW IN PIPE				
OVERLAND FLOW				
LOT GRADING				
BASIN BOUNDARY LINE				
CATCHMENT PRE DEVELOPMENT				
SUB CATCHMENT POST DEVELOPMENT				
EXISTING STORM SEWER				
PROPOSED STORM SEWER				
FUTURE STORM SEWER				
EXISTING CONTOURS				
EXISTING DITCHES				
PROPOSED SWALES				
MANHOLE, CLEANOUT OR HEADWALL NUMBER				
CATCHMENT AREA				
EXISTING DETENTION AREA				
PROPOSED COMMUNITY DETENTION FACILITY				
CATCHMENT FLOW DIRECTION				

NOTES:

- 1. CONTOURS FROM RMOW OPEN DATA 2M LIDAR CONTOURS
- 2. DRAINAGE PATHS APPROXIMATE

NOT FOR CONSTRUCTION	NOT	FOR	CONS	TRUC	TION
----------------------	-----	-----	------	------	------

SURVEYED BY	Y MCELHANNEY GC				
DESIGNED BY	GC GC				
SCALES 0 1:1000 40m					

DATE	2019-12-17			
DRAWING No.				
19-0393-SWCP1				
SHEET	OF 14	REV. 1		
DESTROY ALL PRINTS BEARING PREVIOUS No.				